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Abstract. Towards the ultimate goal of seamless interaction among networked 
programs and devices, industry has developed orchestration and process model-
ing languages such as XLANG, WSFL, and recently BPEL4WS. Unfortunately, 
these efforts leave us a long way from seamless interoperation. Researchers in 
the Semantic Web community have taken up this challenge proposing top-down 
approaches to achieve aspects of Web Service interoperation. Unfortunately, 
many of these efforts have been disconnected from emerging industry stan-
dards, particularly in process modeling. In this paper we take a bottom-up ap-
proach to integrating Semantic Web technology into Web services. Building on 
BPEL4WS, we present integrated Semantic Web technology for automating 
customized, dynamic binding of Web services together with interoperation 
through semantic translation. We discuss the value of semantically enriched 
service interoperation and demonstrate how our framework accounts for user-
defined constraints while gaining potentially successful execution pathways in a 
practically motivated example. Finally, we provide an analysis of the forward-
looking limitations of frameworks like BPEL4WS, and suggest how such speci-
fications might embrace semantic technology at a fundamental level to work 
towards fully automated Web service interoperation. 

1   Introduction 

For many, the long-term goal of the Web services effort is seamless interoperation 
among networked programs and devices.  Once achieved, many see Web services as 
providing the infrastructure for universal plug-and-play and ubiquitous computing 
[30]. To integrate complex, stateful interactions among services, most of the major 
industry players have proposed some form of business process integration, orchestra-
tion, or choreography model.  These include WSCI, BPML, XLANG, WSFL, WSCL, 
BPSS, the Web Services Architecture, and most recently BPEL4WS from IBM, Mi-
crosoft, BEA, SAP, and Siebel [7].  Unfortunately, as we discuss in this paper, these 
standards and their associated computing machinery still place us a long way from 
seamless interoperability. 

In parallel with these industry efforts, the Semantic Web [4] community has been 
developing languages and computing machinery for making Web content unambigu-
ously interpretable by computer programs, with a view to automation of a diversity of 



Web tasks.  Efforts include the development of expressive languages based on artifi-
cial intelligence technology, including RDF [17], RDF(S), DAML+OIL [12,29], and 
most recently a proposal for the Ontology Web Language (OWL) [10,21,26]. In the 
area of Web Services, the Semantic Web community has argued that true interopera-
tion requires description of Web Services in an expressive language with a well-
defined semantics.  To this end, they have developed OWL-S (previously DAML-S), 
an OWL (previously DAML+OIL) ontology for Web services [8]. Similarly, re-
searchers have developed automated reasoning machinery to address some of the more 
difficult tasks necessary for seamless interoperation including a richer form of auto-
mated Web service discovery [25], semantic translation [20], and the ultimate chal-
lenge, automated Web Service composition [24,22,14].  Unfortunately, most of these 
efforts have been top-down approaches building on artificial intelligence and auto-
mated reasoning technology, sometimes grounding them in WSDL [6], but often times 
avoiding connection with evolving industry standards. 

In this paper we take a bottom-up approach to incorporating Semantic Web tech-
nology into Web services.  We argue that to achieve the long-term goal of seamless 
interoperability, Web services must embrace many of the representation and reasoning 
ideas proposed by the Semantic Web community and in particular by the Semantic 
Web services community.  Nevertheless, we acknowledge that Web standards defined 
by industry efforts will shape the evolution of Semantic Web services.  From this 
viewpoint we take the leading candidate for business process modeling on the Web, 
BPEL4WS, and its associated computational machinery, BPWS4J, and augment them 
with Semantic Web technology. In Section 2, we provide a reference example that we 
use to illustrate our contributions. In Section 3 we introduce BPEL4WS, demonstrate 
its use on the example, and characterize its level of automation. In Section 4, we ex-
tend BPEL4WS with a Semantic Discovery Service and introduce semantic transla-
tions to advance the level of interoperability provided by BPEL4WS.  We discuss the 
architecture of our software, demonstrate it with respect to our reference example, and 
analyze its merits and shortcomings. In Section 5, we outline directions for Web ser-
vice interoperation frameworks to achieve tighter integration between infrastructure 
and Semantic Web technologies. We conclude by highlighting the distinct features 
brought to Web service interoperation through richly expressive Semantic Web lan-
guages and well-defined semantics, and suggesting how interoperation frameworks 
might incorporate semantic markup and reasoning to achieve seamless automation of 
Web services. 

2 A Motivating Example 

To realize the value added by automated interoperation it is helpful to have a real-
world example in mind. Consider the task of taking out a loan on the Web. In the 
absence of automation, the user invests considerable resources visiting numerous sites, 
determining appropriate service providers, entering personal information and prefer-
ences repeatedly, integrating information, and waiting for responses. We would prefer 
that the user enters information once and receives the expected results from the most 



appropriate services with minimal additional assistance. One possible interaction 
model follows:  

 

Figure 1. An interaction model for the loan example domain. 

In this scenario, the user sends a single request to a loan finding service containing 
personal information, the type of loan desired, and some provider preferences. The 
loan finder distributes its work among two partner services: a credit assessor, which 
consumes the user’s personal information and provides a credit history report, and a 
lender service, which consumes a credit report and a loan request and returns a rejec-
tion or a loan offer and its terms. The loan finder first invokes a credit assessor to 
generate a credit report for the user, which it then passes to the lender service along 
with the user’s personal information. The lender service generates a result, which the 
loan finder reports to the user. It is no longer required that the user enter information 
multiple times, determine which services are appropriate, or standby to bridge output 
from one service to another as input. These responsibilities have been offloaded to the 
loan finding service and its service provider—the party responsible for the form and 
function of the loan finding service. 

This interaction model is appealing for the user, but switching perspectives to that 
of the service provider, it remains to show how service partners are selected, ordered, 
invoked, and integrated. 



3   Automated Web Service Execution 

A number of specifications and software packages are available to automate the 
execution of hand-written Web service compositions. Among them are BPEL4WS [7], 
WSCI [2], and BPML [1]. In this section we will focus on the most recently leading 
player, BPEL4WS (Business Process Execution Language for Web Services). 

3.1 BPEL4WS and BPWS4J 

The BPEL4WS specification co-authored by IBM, Microsoft, BEA, SAP, and Sie-
bel Systems merges ideas from Microsoft’s XLANG [28] and IBM’s WSFL [18]. It 
provides a notation for describing interactions of Web services as business processes, 
following in the tradition of workflow modeling [31,13]. Workflow in BPEL4WS is 
directed by traditional control structures such as if, then, else, and while-loop. Ser-
vices are integrated by treating them as partners that fill roles in a BPEL4WS process 
model. The communication-level parameters of the partner services are described in 
accompanying WSDL documents. The process model describes a program that or-
chestrates the interaction of the service partners. The key components of the process 
model are: partners, which associate a Web service defined in an accompanying 
WSDL document with a particular role; variables, which contain the messages passed 
between partners and correspond to messages in accompanying WSDL documents; 
fault handlers, which deal with known and unexpected exceptions in the spirit of the 
try-catch programming construct; and flow, which lists the activities defining the con-
trol flow of the process.  

The BPWS4J engine [15], released by IBM alongside of BPEL4WS, implements a 
subset of the features defined in the BPEL4WS specification. The BPWS4J engine 
consumes a BPEL4WS document and WSDL documents defining the bindings for the 
BPEL4WS process and its partners. It then establishes a single endpoint for accessing 
the BPEL4WS process as a Web service. 

3.2 BPEL4WS and the Loan Example 

In order to model the workflow in Figure 1, a service provider writes each of the 
above elements into a BPEL4WS document. For our current purposes it is worth ex-
amining the <partners>  element.  

In a BPEL4WS document modeling the interaction in Figure 1, the loan finding 
service interacts with three <partners>  corresponding to the user, the credit assessor 
service, and the lender service. Note that the loan finding service in Figure 1 is not a 
partner because it corresponds to the BPEL4WS process itself. The element might be 
written as follows: 
 
 
 
 
 



  <partners> 
    <partner name="user"  
       serviceLinkType="lns:loanCustomerLinkType" 
                 partnerRole="user"/> 
    <partner name="assessor"            
       serviceLinkType="lns:USCreditAssessorLinkTyp e" 
                 partnerRole="assessor"/> 
    <partner name="lender" 
       serviceLinkType=”lns:loanLenderLinkType” 
            partnerRole=”lender"/> 
  </partners>   

 
The serviceLinkType  attribute selects a communication-level agreement between 

partners. The partnerRole  attribute identifies which role the partner plays and which 
the loan finding service plays. Each role is bound elsewhere in the BPEL4WS element 
space to a WSDL portType.  

3.3 Critical Analysis of BPEL4WS Automation 

BPWS4J enables automated Web service execution, and BPEL4WS opens the way 
for automated service discovery by leaving service partners unbound at design time. 
Both the engine and the specification, however, have shortcomings that limit their 
ability to provide a foundation for seamless interoperability. 

3.3.1 Limitations in BPWS4J 
Although a mechanism for dynamic partner assignment is outlined in the 

BPEL4WS specification, the version of BPWS4J available at the time of writing omits 
the service reference assignment feature, so a dynamically discovered service could 
not be bound to a partner role within BPWS4J. BPWS4J, then, enables automated 
Web service execution, but not automated Web service discovery.  

Without automated discovery, the service provider is responsible for choosing ser-
vice partners a priori and preconcerting them into an effective unit. Because partner 
services are chosen prior to receiving the user’s request, the system cannot customize 
partner selection for the user’s specific needs or preferences. It is possible that the 
service selects suboptimal service partners, either because the service provider lacks a 
comprehensive list of potential partners at design time, or because of the difficulty in 
finding partners whose solution generalizes for all users. In the case of the loan exam-
ple, it is possible that the user prefers to use an in-state lender because in-state loans 
offer tax incentives from the user’s state government. If the service provider defines 
the lending partner prior to the user’s request, the user’s preference is ignored. Addi-
tionally, discovering and integrating the service partners manually places greater re-
sponsibility and maintenance demands on the service provider than in the automated 
case. 



3.3.2 Limitations of BPEL4WS 
More interesting than engine-specific limitations are those inherent in the form and 

content of the BPEL4WS specification. Descriptions of executable and abstract proc-
esses in BPEL4WS are not declarative; they are not encoded in a manner that facili-
tates symbolic manipulation. As such, they are not well suited to many of the auto-
mated reasoning tasks envisioned by Semantic Web services [23].  

For example, the task of binding service partners to physical ports can, theoreti-
cally, occur at runtime in BPEL4WS. Nevertheless, the description of those service 
partners is done via WSDL portType definitions. Effective dynamic service binding 
cannot be performed by solely matching WSDL messaging interfaces. Service part-
ners should be selected based on functional, nonfunctional and behavioral descriptions 
of what a service does, and how it does it. Further, we argue that such descriptions 
must be encoded in an ontology language (e.g., [26]).  

Restricting service descriptions to the expressivity of strictly syntactic WSDL inter-
faces limits the integration of service partners that operate on messages that have 
different syntax but are semantically compatible. For example, perhaps the only ap-
propriate credit assessor for an ex-UK resident provides UKCreditReports  while the 
lending service consumes USCreditReports . Even if these messages differed only in 
their representation of dates, an interoperation system that cannot recognize the se-
mantic compatibility of the credit reports could fail to realize a potentially successful 
integration. Likewise, service partners that are syntactically identical, but semantically 
incompatible, because different messages are described using the same name, will 
cause binding of functionally incompatible services.  

At the heart of the problem is BPEL4WS's reliance on describing services using 
XML and XMLSchema. XML provides a rudimentary content language, but lacks the 
constructs to describe complex relationships between Web resources. While 
XMLSchema augments XML with a data model and enables datatyping, the semantics 
of XML is underspecified. Further, XMLSchema is not sufficiently expressive to 
create and relate rich datatypes. In contrast, RDF and RDF(S) provide a rudimentary 
ontology language. Not only do they provide a data model for XML, but they also 
enable the representation of classes, properties, domain and range, and sub-class plus 
super-class hierarchies. Still further expressive is OWL, and its predecessor, 
DAML+OIL, which also include a well-defined semantics and the ability to define 
complex relationships between properties of objects in an ontology. By describing 
services in DAML+OIL or OWL, not only do we get a more expressive language for 
describing service partners, but also tools for automatically reasoning about those 
services [16]. With the absence of automated reasoning in BPEL4WS, it is the 
BPEL4WS author’s responsibility to manually construct a process model that follows 
the operational semantics of its service partners.  



4   Automated Service Discovery, Customization, and Semantic 
Translation 

In this section we present work that extends BPWS4J with customized, dynamic 
binding of service partners and semantic translation to address shortcomings presented 
in Section 3. To enable these features, we need to consider three issues: 
1. How to formally represent descriptions of potential service partners 
2. How to store, query and reason about such descriptions to discover appropriate 

partners 
3. How to integrate discovered partners into the BPWS4J engine 

Our approach adopts Semantic Web technologies to address the first issue, and 
these are described in Section 4.1. In Section 4.2, we present novel work in the form 
of a Semantic Discovery Service, which addresses the last two issues. 

4.1 Supporting Technologies 

We adopt several key Semantic Web technologies to enable the description of ser-
vices in a computer interpretable format and the discovery of services with desired 
properties. 

4.1.1 DAML-S 
DAML-S1 is an ontology for describing Web services based on DAML+OIL. As a 

DAML+OIL ontology, DAML-S has a well-defined semantics, making it computer-
interpretable and unambiguous. It also enables the definition of Web services content 
vocabulary in terms of objects and complex relationships between them, including 
class, subclass, and cardinality restrictions. 

The DAML-S upper ontology comprises three components:  
1. ServiceProfile - Relates and builds upon the type of content in UDDI, describing 

the properties of a service necessary for automatic discovery, such as what the 
services offers, its inputs and outputs, and its preconditions and effects. 

2. ServiceModel - Describes a service's process model (the control flow and data-
flow involved in using the service).  It is designed to enable automated composi-
tion and execution of services.   

3. ServiceGrounding - Connects the process model description to communication-
level protocols and message descriptions in WSDL. 

In this section, we focus on the ServiceProfile as a declarative descriptor of Web 
service properties enabling automated, customized service discovery and semantic 
translation. We collect DAML-S service profiles into a repository and exploit their 
semantics to query for partners based on descriptions of the partners’ desired proper-
ties.  

                                                           
1 The DAML-S ontology has recently been translated to OWL, and renamed OWL-S [8]. 



4.1.2 DAML Query Language 
We adopt the DAML Query Language (DQL) [11] as our formal language and pro-

tocol for querying repositories of DAML-S service profiles. DQL defines the con-
struction of queries over a repository comprised of DAML+OIL sentences. In our 
case, the repository is a knowledge base (KB) of DAML-S service profiles. DQL 
queries are handled by a DQL server, which interfaces with an automated reasoner 
operating over the KB. The reasoner determines which profiles satisfy the query re-
strictions. The DQL server answers the query by returning matching profiles in a se-
ries of answer bundles.  

4.1.3 Java Theorem Prover 
We use the Java Theorem Prover (JTP) [16] as the DQL server’s automated rea-

soner. JTP is a hybrid reasoning system based on first-order logic model elimination. 
JTP is a particularly compelling candidate for our work because of its special purpose 
DAML+OIL reasoner. Since the reasoner is based on the axiomatic semantics of 
DAML+OIL, performance can be augmented by efficient storage of DAML+OIL 
sentences as triples and pre-computation of common queries. 

4.2 The Semantic Discovery Service 

DAML-S provides us with means to formally represent the form and function of 
Web services, and DQL/JTP provide us with sufficiently powerful machinery to query 
such descriptions. With these technologies in hand, it remains to integrate semantic 
service description querying into BPWS4J. Since the current release of BPWS4J is 
not immediately extensible, we construct a Semantic Discovery Service (SDS) to work 
within BPWS4J’s perspective as an aggregator of Web services. 

The SDS sits between a BPWS4J process and its potential service partners. Instead 
of routing requests to previously selected partners, BPWS4J directs them to the SDS 
through a locally bound Web service interface. In order for the SDS to dynamically 
discover customized service partners, SDS messages contain (1) the parameters to be 
sent to a discovered service partner, and (2) the required service partner attributes, 
including functional and user constraints, expressed in DAML-S sentences. The SDS 
then locates appropriate service partners and serves as a dynamic proxy between the 
BPWS4J engine and the discovered partners. With this interface come two important 
properties of interactions with the SDS: 
1. The SDS is agnostic as to the content of the service descriptions and invocation 

messages it receives. 
2. The SDS is stateless, with no knowledge of prior interactions, and no service-

specific properties. 
These properties grant the SDS portability between any BPWS4J actions and proc-
esses. 

Further information about the SDS and demonstration code is available online at 
(http://ksl.stanford.edu/sds). 



4.3 Automated Service Customization 

Automated service customization refers to the automatic selection of partners to 
meet preferences and constraints specific to each user. A user’s request might contain 
preferences for a service’s physical location, side effects, quality of service and secu-
rity guarantees, and many other properties.  

 In our approach to automated service customization, user constraints are encoded 
as DAML-S sentences in requests to BPWS4J. Because the BPEL4WS author expects 
each service partner to exhibit particular functional behavior, the BPEL4WS process 
may also add constraints on the functional classes of service partners. These con-
straints are applied to the functionalClass  property of service profiles in the KB.  
functionalClass  properties, in turn, point to an ontology of service functions con-
tained in the KB.  In the absence of a computer interpretable operational semantics, 
referencing ontological representations of functional classes facilitates manual service 
composition by allowing the service partner and BPEL4WS to agree upon expected 
behavior.  

Once the SDS receives a request for a partner service invocation, the SDS wraps 
the request’s DAML-S restrictions inside a DQL query and sends them to the DQL 
server. The DQL server invokes the JTP DAML+OIL reasoner to compute the set of 
DAML-S service profiles meeting the query criteria. Matching DAML-S profiles are 
returned to the SDS as answer bundles. The SDS selects a partner from the answer 
bundles and invokes the partner’s endpoint with the message parameters supplied by 
BPWS4J. The partner does its work and responds to the SDS, which in turn forwards 
the response to BPWS4J. BPWS4J recovers flow control, and continues executing the 
process model, invoking the SDS whenever a customized Web service invocation is 
needed (see Figure 2). 

 

 

Figure 2. Interaction flow between BPWS4J, SDS, DQL server, & discovered service partners. 

 



4.4 Automated Semantic Translation 

A key feature of semantically enriched data structures is their translatability within 
the context of automated reasoning. In goal-directed reasoning, an automated reasoner 
can exploit the semantic equality of syntactically distinct classes of objects to increase 
the number of potentially successful execution pathways. Within the context of Web 
services, semantic translation refers to redefining well-defined data types in terms of 
their relationships to one another via implicit or explicit translational axioms. Seman-
tic translation increases Web service interoperability by facilitating automatic transla-
tion of the inputs and outputs of service partners so they may interact seamlessly. 

The SDS provides automated semantic translation for Web service discovery. Our 
approach uses a recursive back-chaining algorithm to determine a sequence of service 
invocations, or service chain, which takes the input supplied by BPWS4J and pro-
duces the output desired by BPWS4J. Our translational axioms are encoded as transla-
tion programs exposed as Web services. The algorithm invokes the DQL server to 
discover services that produce the desired outputs. If the SDS does not have a required 
input, the algorithm searches for a translator service that outputs the required input 
and adds it to the service chain. The process is recursive and terminates when it con-
structs a successful service chain, or the profiles in the KB (or some bounded subset) 
are exhausted. 

The following pseudocode representation of the algorithm returns a service chain, 
if one exists in the KB, producing the desired output while consuming only the avail-
able inputs: 
 
Initialization: 
weHave = {inputs provided by BPWS4J process}; 
weWant = {output desired by BPWS4J process}; 
Step: 
findServiceChain (weHave, weWant) { 
  svcs = getServicesOutputtingWeWant(weWant); 
  foreach service in svcs { 
    chain = new chain; 
    foreach input in service.inputs { 
      if input not in weHave { 
 newSvcs = findServiceChain(weHave, service.inputs) ; 
 chain.add(newSvcs); 
      } 
    } 
    if all service.inputs in weHave { 
      chain.add(service); 
 return chain; 
    } 
  } 
  return null; // no chain found 
} 
 

Note that this algorithm fits our purposes for a small DAML-S KB, but the worst-
case execution time grows exponentially in the number of inputs we allow. To im-
prove performance we could utilize a heuristic that eliminates low scoring services 
from the svcs  list based on a scoring function, e.g., the minimal distance between 



inputs we desire and the service’s outputs in a taxonomy tree, as described in [25]. 
Additionally, we could favor service partners requiring fewer inputs. 

Also note that we only account for inputs and outputs in translation because the 
translator services are of the same functional class. The translation services we de-
scribe are merely implementations of translational axioms and have no preconditions 
or side effects. 

4.5 SDS and the Loan Example 

We now consider the SDS in the context of the loan finding example from Sections 
2 and 3. Assume that the user has recently moved to California, USA from the United 
Kingdom, so that the only potential credit-reporting agency is based in the UK. This 
credit assessor produces credit reports of class UKCreditReport . BPWS4J must then 
invoke a service that inputs a UKCreditReport  and outputs a LoanResult . The behav-
ior of the service is enforced by BPWS4J requiring that the partner be of functional 
class creditAssesor , which is defined in an ontology as described in Section 4.3. 
Assume further that the user must get a loan from a US lender and, moreover, wishes 
to borrow from a California-based lender (to take advantage of in-state tax incentives). 
The SDS may locate a CA-based lender of the required functional class using auto-
mated customization, but if the only such available lender requires a USCreditReport  
as an input the SDS would fail to discover an appropriate lender. The BPWS4J proc-
ess would report that the request could not be completed. 

With semantic translation, the user’s request becomes satisfiable. We introduce into 
the DAML-S KB the profile for a DateTranslator  service of functional class seman-

ticTranslator  that translates between USCreditReport  and UKCreditReport  classes. 
Assume that this service implements a semantic translation axiom that, for simplicity, 
properly declares that the credit reports are identical except that the US version repre-
sents dates as MM/DD/YYYY, while the UK version uses DD/MM/YYYY. Since the 
DateTranslator  service requires a UKCreditReport  as an input, and the SDS has one 
available, the algorithm adds the DateTranslator  to the chain. The service chain 
(assessor �DateTranslator �lender ) now consumes a UKCreditReport  and pro-
duces a LoanResult  as desired by the BPWS4J process. The SDS executes the service 
chain and returns the LoanResult  to BPWS4J. 

4.6 Characterization of SDS Automation 

We now characterize the level of automation provided by BPWS4J extended with a 
Semantic Discovery Service within the broader context of Web service interoperation. 
As in Section 3, the BPWS4J engine provides automated Web service execution given 
a BPEL4WS process model. In this section, we introduce the Semantic Discovery 
Service, which extends BPWS4J with customized, dynamic service binding and se-
mantic translation. These capabilities enlarge the space of potentially successful exe-
cutions, and allow the framework to account for user-defined constraints in partner 
selection. 



The SDS does not, however, enable automated Web service composition. This no-
tion is regarded in the Semantic Web community as the determination of an execution 
plan to accomplish an objective given a current state, and adapting that plan as state 
changes without human intervention. Despite the fact that our implementation does 
discover and execute a sequence of services to produce a desired output from pro-
vided inputs, the fundamental workflow defined in the BPEL4WS document is inten-
tionally unchanged, as we discuss below.  

The reasoning performed by the SDS is purely communicative and ignores ser-
vices’ preconditions and effects, aside from those accounted for implicitly by their 
functional classes. To reason about preconditions and effects is to reason about what a 
service does. In the case of BPWS4J, the service provider performs this reasoning 
manually by defining a BPEL4WS process that utilizes a predefined number of ser-
vice partners with expected operational semantics and an execution ordering. As such, 
the service provider imposes a particular decomposition of the process, making it 
inappropriate for the SDS to perform automated service composition for two reasons. 
First, recomposing a process without knowing the intended side effects of the original 
composition (i.e., those intended by the service provider) runs the risk of composing 
services with unintended side effects. Second, even if the SDS did have a formal de-
scription of the expected effects of the service partners – for example, an operational 
semantics defined by a DAML-S ServiceModel – recomposing the process into a new 
workflow reproduces the work of BPWS4J and the service provider, so the SDS 
would be replacing the very system it is supposed to complement. Enabling automated 
Web service composition within BPWS4J and similarly featured frameworks requires 
fundamentally redefining their roles and capabilities towards reasoning about abstract 
objectives and services described in languages with well-defined semantics. To so do, 
frameworks will need to shift from an interface-oriented perspective on Web services 
to one that is functionally-oriented. 

5 Future Directions for Web Service Interoperation Systems 

In this Section we briefly outline some directions for Web service interoperation 
frameworks to facilitate fuller integration between infrastructure and Semantic Web 
technologies. We consider automating service discovery and then service composition 
in turn, grounded in our critique and extension of BPEL4WS. 

5.1 Adapting BPEL4WS for Automated Service Discovery, Customization, and 
Semantic Integration 

As discussed in Section 3.3.2, the central shortcoming in BPEL4WS giving rise to 
the need for the Semantic Discovery Service is its reliance on XML and XMLSchema 
for describing Web service partners (for now we set aside shortcomings in the current 
implementation of the BPWS4J engine). BPEL4WS could subsume the capabilities 
provided by the SDS by relaxing its dependence on XML in favor of higher-level 
descriptions in a language like DAML-S. DAML-S service profiles can be used to 
query for service partners, as in the SDS, and the DAML-S service grounding can be 



used to connect the high-level description to communication level protocols like 
WSDL (see [8] for details), saving the final binding to portTypes until runtime. 
BPEL4WS engines could easily query repositories for services using their built-in 
communication-level functionality. 

5.2 Adapting BPEL4WS for Automated Service Composition 
Automating service composition with frameworks like BPEL4WS requires a more 

substantial evolution, shifting its perspective as an execution framework for prede-
fined process models to that of an automated reasoner over abstract goals. Execution 
plans devised to attain such goals must be adjustable as execution state changes. 

Several working systems developed by researchers in the Semantic Web commu-
nity perform this function [22,24,20]. These frameworks share two key components 
necessary to automate Web service composition. The first is a declarative representa-
tion of the capabilities of each Web service in a semantically well-defined language 
that is computer interpretable, as employed by the SDS or the modified version of 
BPEL4WS suggested in Section 5.1. Further, this information must abstractly describe 
the service’s function as well as its form. While BPEL4WS’s predecessors, XLANG 
and WSFL, had a well-defined semantics for describing the execution of a workflow, 
to date BPEL4WS has not been shown to maintain this property. Adopting the 
DAML-S ServiceModel would shift the perspective of the interoperation framework  
towards being functionally-oriented on service partners. Partners could then be chosen 
based on functional and operational constraints in addition to their communication-
level properties. In the case of the loan finding example, the ServiceModel would 
formally declare how the service functions, the potential side effects, and the neces-
sary preconditions so that automated reasoning machinery could appropriately ma-
nipulate it to determine a composition. The runtime execution of the model would be 
determined by an automated reasoner within the BPEL4WS engine, allowing far 
greater flexibility in successfully completing the user’s request. In a loan finding sce-
nario, for example, there are clearly many more ways to get a loan than the “assessor-
lender” model. The composition system could propose, for example, an advance on 
the user’s credit card, government subsidized assistance, or other solutions that meet 
the user’s objective but may be more financially desirable or practical.  

As implied above, the second necessary component to automated Web service 
composition is appropriate computational machinery to manipulate service descrip-
tions to produce a composition. All of the composition work from the Semantic Web 
mentioned above employs such machinery operating on some model with a formal 
executional semantics. For example, Karmasim [24] uses reachability analysis over 
Petri nets. McIlraith and Son’s work [22] uses Prolog and a subset of first-order logic. 
McDermott’s work [20] likewise uses a logic-based automated reasoning system. All 
of these approaches, while powerful, reveal the need for further research, particularly 
in integration with industrial efforts. Importantly, however, this work highlights the 
spectrum of approaches interoperation frameworks could employ to increase their 
power and flexibility.  



6 Conclusion 

Seamless interoperability among networked programs and devices is critical for 
Web services to provide an infrastructure for the vision of ubiquitous computing. We 
argued here that industry has taken us a step in this direction with computing machin-
ery for automated service execution, while the Semantic Web community has devel-
oped powerful representation and reasoning technology but has remained largely dis-
connected from the industrial effort. In acknowledgement of the fact that Web service 
technology will continue to evolve from emerging industry standards, we developed 
software from the bottom-up that extends industrial machinery with Semantic Web 
technology to enable automated service discovery, customization, and semantic trans-
lation. By integrating our technology, the industrial system gained the following capa-
bilities: 
1. Automatic, runtime binding of service partners 
2. Selection between multiple service partners based on user-defined preferences 

and constraints 
3. Integration of service partners with syntactically distinct but semantically trans-

latable service descriptions 
We further argued that these capabilities approach the limit of automated service 

interoperation with current industrial machinery. Extending manual composition 
frameworks with automated composition machinery supplants provider-defined work-
flows with potentially undesirable recompositions. Achieving automated Web service 
composition requires a fundamental shift in industrial frameworks from executing 
predefined process models to computing and adapting execution plans from abstract 
objectives. In particular, in order for industry to achieve this shift, it is critical that: 
1. Web service providers publish unambiguous, computer-interpretable declarations 

of Web service form and function, at a level of detail commensurate with the task, 
and in a language with a well-defined semantics 

2. Web service interoperation frameworks embed automated reasoning technology 
into their systems and specifications that is capable of reasoning about semantic 
descriptions of Web services. 

With the Semantic Web grounded in firm industrial support, we can begin to attain the 
manifold benefits of fully integrated, Web-wide distributed computation. 
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