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Abstract. Towards the ultimate goal of seamless interactimong networked
programs and devices, industry has developed drelties and process model-
ing languages such as XLANG, WSFL, and recently BRES. Unfortunately,
these efforts leave us a long way from seamlessdperation. Researchers in
the Semantic Web community have taken up this ehgé proposing top-down
approaches to achieve aspects of Web Service paration. Unfortunately,
many of these efforts have been disconnected froverging industry stan-
dards, particularly in process modeling. In thipgrawe take a bottom-up ap-
proach to integrating Semantic Web technology Wb services. Building on
BPEL4WS, we present integrated Semantic Web teclggofor automating
customized, dynamic binding of Web services togethith interoperation
through semantic translation. We discuss the valusemantically enriched
service interoperation and demonstrate how our dveank accounts for user-
defined constraints while gaining potentially siesfal execution pathways in a
practically motivated example. Finally, we provide analysis of the forward-
looking limitations of frameworks like BPELAWS, asdggest how such speci-
fications might embrace semantic technology atradéunental level to work
towards fully automated Web service interoperation.

1 Introduction

For many, the long-term goal of the Web servicésrefs seamless interoperation
among networked programs and devices. Once achievany see Web services as
providing the infrastructure for universal plug-guidy and ubiquitous computing
[30]. To integrate complex, stateful interactiomaoag services, most of the major
industry players have proposed some form of busipescess integration, orchestra-
tion, or choreography model. These include WSE®&MB, XLANG, WSFL, WSCL,
BPSS, the Web Services Architecture, and most tscBRPEL4AWS from IBM, Mi-
crosoft, BEA, SAP, and Siebel [7]. Unfortunatedyg we discuss in this paper, these
standards and their associated computing machstéhplace us a long way from
seamless interoperability.

In parallel with these industry efforts, the SenwllVeb [4] community has been
developing languages and computing machinery fdiimyaWeb content unambigu-
ously interpretable by computer programs, withewto automation of a diversity of



Web tasks. Efforts include the development of egpive languages based on artifi-
cial intelligence technology, including RDF [17]PR(S), DAML+OIL [12,29], and
most recently a proposal for the Ontology Web Laggu(OWL) [10,21,26]. In the
area of Web Services, the Semantic Web commungyahgued that true interopera-
tion requires description of Web Services in anregpive language with a well-
defined semantics. To this end, they have devdl@/L-S (previously DAML-S),
an OWL (previously DAML+OIL) ontology for Web sepés [8]. Similarly, re-
searchers have developed automated reasoning raactoraddress some of the more
difficult tasks necessary for seamless interopemaitncluding a richer form of auto-
mated Web service discovery [25], semantic traimsigf20], and the ultimate chal-
lenge, automated Web Service composition [24,22,14i}fortunately, most of these
efforts have been top-down approaches building rtificéal intelligence and auto-
mated reasoning technology, sometimes grounding thaVSDL [6], but often times
avoiding connection with evolving industry standard

In this paper we take a bottom-up approach to pm@ting Semantic Web tech-
nology into Web services. We argue that to achtbeelong-term goal of seamless
interoperability, Web services must embrace marth@frepresentation and reasoning
ideas proposed by the Semantic Web community arghiticular by the Semantic
Web services community. Nevertheless, we acknaydetat Web standards defined
by industry efforts will shape the evolution of Sewtic Web services. From this
viewpoint we take the leading candidate for busine®cess modeling on the Web,
BPEL4WS, and its associated computational machjreVS4J, and augment them
with Semantic Web technology. In Section 2, we te\a reference example that we
use to illustrate our contributions. In Section & wtroduce BPEL4AWS, demonstrate
its use on the example, and characterize its lefzautomation. In Section 4, we ex-
tend BPEL4WS with a Semantic Discovery Service micbduce semantic transla-
tions to advance the level of interoperability pded by BPELAWS. We discuss the
architecture of our software, demonstrate it witbprect to our reference example, and
analyze its merits and shortcomings. In Sectiowe outline directions for Web ser-
vice interoperation frameworks to achieve tighteegration between infrastructure
and Semantic Web technologies. We conclude by igigithg the distinct features
brought to Web service interoperation through sickkpressive Semantic Web lan-
guages and well-defined semantics, and suggestimg ihteroperation frameworks
might incorporate semantic markup and reasonirgctoeve seamless automation of
Web services.

2 A Motivating Example

To realize the value added by automated interojperétis helpful to have a real-
world example in mind. Consider the task of takmg a loan on the Web. In the
absence of automation, the user invests considerabburces visiting numerous sites,
determining appropriate service providers, entegagsonal information and prefer-
ences repeatedly, integrating information, andingitor responses. We would prefer
that the user enters information once and recehe®xpected results from the most



appropriate services with minimal additional assise. One possible interaction
model follows:

User

REQUEST:
_LOAN INFO: amount, type,
term, schedule

_PERSONAL INFO: name, ss#
_USER PREFS: location, etc C LOAN RESULT )

Loan Finding Service

LOAN RESULT:
_LOAN INFO
_Approved,
_Interest Rate

CREDIT REPORT:
_Address,
_Court Judgements,
_Bank Data

LOAN PROFILE:
_CREDIT REPORT,
_LOAN INFO

PERSONAL INFO

Credit Assessor Lender Service

Figure 1. An interaction model for the loan example domain.

In this scenario, the user sends a single reqaesidan finding service containing
personal information, the type of loan desired, anthe provider preferences. The
loan finder distributes its work among two partservices: a credit assessor, which
consumes the user’s personal information and pesval credit history report, and a
lender service, which consumes a credit reportaatwhn request and returns a rejec-
tion or a loan offer and its terms. The loan findiest invokes a credit assessor to
generate a credit report for the user, which inthasses to the lender service along
with the user’s personal information. The lendewise generates a result, which the
loan finder reports to the user. It is no longequieed that the user enter information
multiple times, determine which services are appatg, or standby to bridge output
from one service to another as input. These redpititiss have been offloaded to the
loan finding service and itservice providerthe party responsible for the form and
function of the loan finding service.

This interaction model is appealing for the user, dwitching perspectives to that
of the service provider, it remains to show hows®er partners are selected, ordered,
invoked, and integrated.



3 Automated Web Service Execution

A number of specifications and software packagesamailable to automate the
execution of hand-written Web service compositigkreong them are BPEL4AWS [7],
WSCI [2], and BPML [1]. In this section we will fas on the most recently leading
player, BPELAWSHusiness Process Execution Language for Web Ssgyvice

3.1 BPEL4WS and BPWSAJ

The BPEL4WS specification co-authored by IBM, Misoft, BEA, SAP, and Sie-
bel Systems merges ideas from Microsoft's XLANG][28d IBM’s WSFL [18]. It
provides a notation for describing interactiond\db services alsusiness processes
following in the tradition ofworkflow modeling [31,13]. Workflow in BPELAWS is
directed by traditional control structures suchifashen, elseand while-loop Ser-
vices are integrated by treating thenpastnersthat fill rolesin a BPEL4AWSrocess
model The communication-level parameters of the parteevices are described in
accompanying WSDL documents. The process modelribesca program that or-
chestrates the interaction of the service partrighe. key components of the process
model are:partners which associate a Web service defined in an apeosing
WSDL document with a particular roleariables which contain the messages passed
between partners and correspond to messages impaoging WSDL documents;
fault handlers which deal with known and unexpected exceptionthé spirit of the
try-catch programming construct; arftbw, which lists theactivitiesdefining the con-
trol flow of the process.

The BPWS4J engine [15], released by IBM alongsidBREL4AWS, implements a
subset of the features defined in the BPEL4AWS §ipation. The BPWS4J engine
consumes a BPEL4AWS document and WSDL documentsinigtihe bindings for the
BPEL4WS process and its partners. It then estasishsingle endpoint for accessing
the BPEL4WS process as a Web service.

3.2 BPEL4WS and the Loan Example

In order to model the workflow in Figure 1, a seeviprovider writes each of the
above elements into a BPEL4AWS document. For owentipurposes it is worth ex-
amining the<partners>  element.

In a BPELAWS document modeling the interaction igufe 1, the loan finding
service interacts with threeattners>  corresponding to the user, the credit assessor
service, and the lender service. Note that the foaling service in Figure 1 is not a
partner because it corresponds to the BPEL4WS psatself. The element might be
written as follows:



<partners>
<partner name="user"
serviceLinkType="Ins:loanCustomerLinkType"
partnerRole="user"/>
<partner name="assessor"
serviceLinkType="Ins:USCreditAssessorLinkTyp e
partnerRole="assessor"/>
<partner name="lender"
serviceLinkType="Ins:loanLenderLinkType”
partnerRole="lender"/>
</partners>

The serviceLinkType  attribute selects a communication-level agreemeti/den
partners. TheartnerRole  attribute identifies which role the partner playsl avhich
the loan finding service plays. Each role is boalsg@where in the BPEL4AWS element
space to a WSDL portType.

3.3 Critical Analysis of BPEL4WS Automation

BPWS4J enables automated Web service executiorBBEL4WS opens the way
for automated service discovery by leaving sergiagners unbound at design time.
Both the engine and the specification, howeverehslvortcomings that limit their
ability to provide a foundation for seamless inpen@bility.

3.3.1 Limitationsin BPWSA4J

Although a mechanism for dynamic partner assignmientoutlined in the
BPEL4WS specification, the version of BPWS4J awddat the time of writing omits
the service reference assignment feature, so amdyably discovered service could
not be bound to a partner role within BPWS4J. BPWSHen, enables automated
Web service execution, but not automated Web sedigcovery.

Without automated discovery, the service provideresponsible for choosing ser-
vice partnersa priori and preconcerting them into an effective unit. &ese partner
services are choserior to receiving the user’s request, the systanmot customize
partner selection for the user’'s specific needpreferences. It is possible that the
service selects suboptimal service partners, eftbeause the service provider lacks a
comprehensive list of potential partners at desiige, or because of the difficulty in
finding partners whose solution generalizes fouaérs. In the case of the loan exam-
ple, it is possible that the user prefers to usénastate lender because in-state loans
offer tax incentives from the user’s state govemim# the service provider defines
the lending partner prior to the user’'s requed,uber’s preference is ignored. Addi-
tionally, discovering and integrating the servigtpers manually places greater re-
sponsibility and maintenance demands on the sepricéider than in the automated
case.



3.3.2 Limitations of BPEL4WS

More interesting than engine-specific limitatioms ghose inherent in the form and
content of the BPEL4AWS specification. Descriptiofigxecutable and abstract proc-
esses in BPEL4WS are not declarative; they areenobvded in a manner that facili-
tates symbolic manipulation. As such, they arewelt suited to many of the auto-
mated reasoning tasks envisioned by Semantic Weltes [23].

For example, the task of binding service partnerphysical ports can, theoreti-
cally, occur at runtime in BPELAWS. Neverthele$® tescription of those service
partners is done via WSDL portType definitions.deffve dynamic service binding
cannot be performed by solely matching WSDL mesgpgiterfaces. Service part-
ners should be selected based on functional, notifunal and behavioral descriptions
of what a service does, and how it does it. Furtiver argue that such descriptions
must be encoded in an ontology language (e.g.).[26]

Restricting service descriptions to the expressivitstrictly syntactic WSDL inter-
faces limits the integration of service partnerattbperate on messages that have
different syntax but are semantically compatibler Example, perhaps the only ap-
propriate credit assessor for an ex-UK residenviges UKCreditReports ~ while the
lending service consumesscCreditReports . Even if these messages differed only in
their representation of dates, an interoperati®stesy that cannot recognize the se-
mantic compatibility of the credit reports couldl f@ realize a potentially successful
integration. Likewise, service partners that amgastically identical, but semantically
incompatible, because different messages are Hescrsing the same name, will
cause binding of functionally incompatible services

At the heart of the problem is BPEL4AWS's reliancedescribing services using
XML and XMLSchema. XML provides a rudimentary camtéanguage, but lacks the
constructs to describe complex relationships betwé®eb resources. While
XMLSchema augments XML with a data model and ersabgatyping, the semantics
of XML is underspecified. Further, XMLSchema is malffficiently expressive to
create and relate rich datatypes. In contrast, BB RDF(S) provide a rudimentary
ontology language. Not only do they provide a datadel for XML, but they also
enable the representation of classes, propertisaith and range, and sub-class plus
super-class hierarchies. Still further expressige QWL, and its predecessor,
DAML+OIL, which also include a well-defined semargtiand the ability to define
complex relationships between properties of objéttan ontology. By describing
services in DAML+OIL or OWL, not only do we get som expressive language for
describing service partners, but also tools foomuatically reasoning about those
services [16]. With the absence of automated réagom BPEL4WS, it is the
BPEL4WS author’s responsibility to manually constra process model that follows
the operational semantics of its service partners.



4  Automated Service Discovery, Customization, and Semantic
Trandation

In this section we present work that extends BPWB#J customized, dynamic
binding of service partners and semantic transiaticaddress shortcomings presented
in Section 3. To enable these features, we needrsider three issues:

1. How to formally represent descriptions of potensi@tvice partners

2. How to store, query and reason about such desmmiptio discover appropriate
partners

3. How to integrate discovered partners into the BPW@&ine

Our approach adopts Semantic Web technologies doessl the first issue, and
these are described in Section 4.1. In SectionwleZpresent novel work in the form
of aSemantic Discovery Servioghich addresses the last two issues.

4.1 Supporting Technologies

We adopt several key Semantic Web technologiesable the description of ser-
vices in a computer interpretable format and trsealiery of services with desired
properties.

4.1.1 DAML-S

DAML-S? is an ontology for describing Web services base®AML+OIL. As a
DAML+OIL ontology, DAML-S has a well-defined semé&¥, making it computer-
interpretable and unambiguous. It also enablegidfiaition of Web services content
vocabulary in terms of objects and complex relaidps between them, including
class, subclass, and cardinality restrictions.

The DAML-S upper ontology comprises three compaosient
1. ServiceProfile- Relates and builds upon the type of contentdDU describing

the properties of a service necessary for autonthisicovery, such as what the
services offers, its inputs and outputs, and ikE@nditions and effects.

2. ServiceModel Describes a service's process model (the cofibwl and data-
flow involved in using the service). It is design® enable automated composi-
tion and execution of services.

3. ServiceGrounding Connects the process model description to coroation-
level protocols and message descriptions in WSDL.

In this section, we focus on the ServiceProfileaadeclarative descriptor of Web
service properties enabling automated, customizgdice discovery and semantic
translation. We collect DAML-S service profiles dna repository and exploit their
semantics to query for partners based on desangptid the partners’ desired proper-
ties.

1 The DAML-S ontology has recently been translae®WL, and renamed OWL-S [8].



4.1.2 DAML Query Language

We adopt thddAML Query LanguagéDQL) [11] as our formal language and pro-
tocol for querying repositories of DAML-S serviceofiles. DQL defines the con-
struction of queries over a repository comprisedDéfML+OIL sentences. In our
case, the repository is knowledge bas€éKB) of DAML-S service profiles. DQL
gueries are handled by a DQL server, which intedagith anautomated reasoner
operating over the KB. The reasoner determinestwhiofiles satisfy the query re-
strictions. The DQL server answers the query byrnittg matching profiles in a se-
ries ofanswer bundles

4.1.3 Java Theorem Prover

We use thelava Theorem ProvedTP) [16] as the DQL server's automated rea-
soner. JTP is a hybrid reasoning system basedsirofider logic model elimination.
JTP is a particularly compelling candidate for mark because of its special purpose
DAML+OIL reasoner. Since the reasoner is based han axiomatic semantics of
DAML+OIL, performance can be augmented by efficistbrage of DAML+OIL
sentences as triples and pre-computation of conqueries.

4.2 The Semantic Discovery Service

DAML-S provides us with means to formally represdm form and function of
Web services, and DQL/JTP provide us with suffitiepowerful machinery to query
such descriptions. With these technologies in h#inckmains to integrate semantic
service description querying into BPWS4J. Since dheent release of BPWS4J is
not immediately extensible, we constru@emantic Discovery Servi¢BDS) to work
within BPWS4J'’s perspective as an aggregator of ¥éehices.

The SDS sits between a BPWS4J process and itstiabtegrvice partners. Instead
of routing requests to previously selected partn@BNS4J directs them to the SDS
through a locally bound Web service interface. tdeo for the SDS to dynamically
discover customized service partners, SDS messayeain (1) the parameters to be
sent to a discovered service partner, and (2) ¢ljeired service partner attributes,
including functional and user constraints, exprdsseDAML-S sentences. The SDS
then locates appropriate service partners and s@vea dynamic proxy between the
BPWS4J engine and the discovered partners. Withinkérface come two important
properties of interactions with the SDS:

1. The SDS is agnostic as to the content of the serd@scriptions and invocation
messages it receives.

2. The SDS is stateless, with no knowledge of priderections, and no service-
specific properties.

These properties grant the SDS portability betwaeyn BPWS4J actions and proc-

esses.

Further information about the SDS and demonstratiote is available online at
(http://ksl.stanford.edu/sds).



4.3 Automated Service Customization

Automated service customization refers to the aat@nselection of partners to
meet preferences and constraints specific to eseh A user’s request might contain
preferences for a service’s physical location, siffects, quality of service and secu-
rity guarantees, and many other properties.

In our approach to automated service customizatiear constraints are encoded
as DAML-S sentences in requests to BPWS4J. BecdagaRPEL4AWS author expects
each service partner to exhibit particular functlolbehavior, the BPELAWS process
may also add constraints on the functional clasdeservice partners. These con-
straints are applied to thenctionalClass property of service profiles in the KB.
functionalClass properties, in turn, point to an ontology of seevifunctions con-
tained in the KB. In the absence of a computesrpretable operational semantics,
referencing ontological representations of funaiariasses facilitates manual service
composition by allowing the service partner and BRES to agree upon expected
behavior.

Once the SDS receives a request for a partnerceenwocation, the SDS wraps
the request’'s DAML-S restrictions inside a DQL guand sends them to the DQL
server. The DQL server invokes the JTP DAML+OILs®@er to compute the set of
DAML-S service profiles meeting the query criterMatching DAML-S profiles are
returned to the SDS as answer bundles. The SD8tseaepartner from the answer
bundles and invokes the partner's endpoint withrttessage parameters supplied by
BPWS4J. The partner does its work and respondset®&DS, which in turn forwards
the response to BPWS4J. BPWS4J recovers flow dpatmd continues executing the
process model, invoking the SDS whenever a custxni¥eb service invocation is
needed (see Figure 2).

(6) Partner executes Dlgcovlered
ervice

and returns to SDS
Partner
(7) SDS returns partner A
response to BPWS4J

(5) SDS invokes a discovered
¢ I service with Invocation
Y Parameters from BPWS4J

BPWS4J SDS
(4) DQL Server returns matching
‘ T profiles in answer bundles
(1) BPWS4J sends Invocation
Parameters and DAML-S E(?vlv_e?sc;v:; DAML-S
Service Requirements to SDS (2) SDSsends DQL JTP Profile KB
A

query to DQL server
based on DAML-S
Service Requirements

(3) DQL server uses
JTP to find service
profiles in the DAML-S
KB matching the query

Figure 2. Interaction flow between BPWS4J, SDS, DQL ser@edjscovered service partners.



4.4 Automated Semantic Trandation

A key feature of semantically enriched data stngts their translatability within
the context of automated reasoning. In goal-diccot@soning, an automated reasoner
can exploit the semantic equality of syntacticdlilstinct classes of objects to increase
the number of potentially successful execution watts. Within the context of Web
servicessemantic translatiomefers to redefining well-defined data types ime of
their relationships to one another via implicitexplicit translational axioms. Seman-
tic translation increases Web service interopeitgtily facilitating automatic transla-
tion of the inputs and outputs of service partsershey may interact seamlessly.

The SDS provides automated semantic translatioMfeb service discovery. Our
approach uses a recursivack-chainingalgorithm to determine a sequence of service
invocations, orservice chainwhich takes the input supplied by BPWS4J and pro-
duces the output desired by BPWS4J. Our transkitexioms are encoded as transla-
tion programs exposed as Web services. The algoritivokes the DQL server to
discover services that produce the desired outffute SDS does not have a required
input, the algorithm searches for a translatoriserthat outputs the required input
and adds it to the service chain. The processcigs&ve and terminates when it con-
structs a successful service chain, or the proiildee KB (or some bounded subset)
are exhausted.

The following pseudocode representation of theritlym returns a service chain,
if one exists in the KB, producing the desired otitwhile consuming only the avail-
able inputs:

Initialization:
weHave = {inputs provided by BPWS4J process};
weWant = {output desired by BPWS4J process};
Step:
findServiceChain (weHave, weWant) {
svcs = getServicesOutputtingWeWant(weWant);
foreach service in svcs {
chain = new chain;
foreach input in service.inputs {
if input not in weHave {
newSvcs = findServiceChain(weHave, service.inputs) ;
chain.add(newSvcs);

}

if all service.inputs in weHave {
chain.add(service);
return chain;
}

return null; // no chain found

Note that this algorithm fits our purposes for aaBrdAML-S KB, but the worst-
case execution time grows exponentially in the nemdf inputs we allow. To im-
prove performance we could utilize a heuristic tbinates low scoring services
from thesvcs list based on a scoring function, e.g., the minhidiatance between



inputs we desire and the service’s outputs in artamy tree, as described in [25].
Additionally, we could favor service partners retg fewer inputs.

Also note that we only account for inputs and otgpn translation because the
translator services are of the same functionalscl@ibe translation services we de-
scribe are merely implementations of translatiacnabms and have no preconditions
or side effects.

4.5 SDS and the Loan Example

We now consider the SDS in the context of the lirating example from Sections
2 and 3. Assume that the user has recently mov€&alifornia, USA from the United
Kingdom, so that the only potential credit-repagtimgency is based in the UK. This
credit assessor produces credit reports of alasseditReport . BPWS4J must then
invoke a service that inputsuicCreditReport ~ and outputs @ocanResult . The behav-
ior of the service is enforced by BPWS4J requitingt the partner be of functional
classcreditAssesor , which is defined in an ontology as described @ttn 4.3.
Assume further that the user must get a loan frddSdender and, moreover, wishes
to borrow from a California-based lender (to tallgantage of in-state tax incentives).
The SDS may locate a CA-based lender of the redjdiractional class using auto-
mated customization, but if the only such availdbleer requires aScCreditReport
as an input the SDS would fail to discover an appate lender. The BPWS4J proc-
ess would report that the request could not be tetath

With semantic translation, the user’s request besosatisfiable. We introduce into
the DAML-S KB the profile for @ateTranslator ~ service of functional claggman-
ticTranslator that translates betwe@&scCreditReport ~andUKCreditReport  classes.
Assume that this service implements a semantishxtiaon axiom that, for simplicity,
properly declares that the credit reports are idahéxcept that the US version repre-
sents dates asm/DD/YYYY, while the UK version use®D/MM/YYYY. Since the
DateTranslator ~ Service requires @KCreditReport ~ as an input, and the SDS has one
available, the algorithm adds tlmateTranslator to the chain. The service chain
(assessor —DateTranslator ~ —>lender ) NOW consumes &KCreditReport —and pro-
duces aoanResult as desired by the BPWS4J process. The SDS exdbateervice
chain and returns th@anResult to BPWS4J.

4.6 Characterization of SDS Automation

We now characterize the level of automation prodidg BPWS4J extended with a
Semantic Discovery Service within the broader canté Web service interoperation.
As in Section 3, the BPWS4J engine provides autednéeb service execution given
a BPEL4WS process model. In this section, we intcedthe Semantic Discovery
Service, which extends BPWS4J with customized, ahyoaervice binding and se-
mantic translation. These capabilities enlargesitece of potentially successful exe-
cutions, and allow the framework to account forridefined constraints in partner
selection.



The SDS does not, however, enabldomatedNeb service compositiofrhis no-
tion is regarded in the Semantic Web communityhastietermination of an execution
plan to accomplish an objective given a currentestand adapting that plan as state
changes without human intervention. Despite thé flaat our implementation does
discover and execute a sequence of services taugeod desired output from pro-
vided inputs, the fundamental workflow defined lve BPEL4AWS document is inten-
tionally unchanged, as we discuss below.

The reasoning performed by the SDS is purely conratime and ignores ser-
vices’ preconditions and effects, aside from thaseounted for implicitly by their
functional classes. To reason about preconditiodsedfects is to reason about what a
service does. In the case of BPWS4J, the servioeidar performs this reasoning
manually by defining a BPEL4AWS process that utlizepredefined number of ser-
vice partners with expected operational semantidsam execution ordering. As such,
the service provider imposes a particular decontiposiof the process, making it
inappropriate for the SDS to perform automatedisergomposition for two reasons.
First, recomposing a process without knowing thierided side effects of the original
composition (i.e., those intended by the serviaavigler) runs the risk of composing
services with unintended side effects. Second, &viere SDS did have a formal de-
scription of the expected effects of the servicergas — for example, an operational
semantics defined by a DAML-ServiceMode} recomposing the process into a new
workflow reproduces the work of BPWS4J and the iserprovider, so the SDS
would be replacing the very system it is supposetbimplement. Enabling automated
Web service composition within BPWS4J and simildelgtured frameworks requires
fundamentally redefining their roles and capaleiittowards reasoning about abstract
objectives and services described in languageswéthdefined semantics. To so do,
frameworks will need to shift from dnterface-orientegerspective on Web services
to one that isunctionally-oriented

5 Future Directionsfor Web Service I nteroperation Systems

In this Section we briefly outline some directidies Web service interoperation
frameworks to facilitate fuller integration betwemnfrastructure and Semantic Web
technologies. We consider automating service disgoand then service composition
in turn, grounded in our critique and extensioBBEL4AWS.

5.1 Adapting BPEL4WS for Automated Service Discovery, Customization, and
Semantic Integration

As discussed in Section 3.3.2, the central shoritogiim BPEL4WS giving rise to
the need for the Semantic Discovery Service iseliance on XML and XMLSchema
for describing Web service partners (for now weasétle shortcomings in the current
implementation of the BPWS4J engine). BPELAWS caubdsume the capabilities
provided by the SDS by relaxing its dependence i Xn favor of higher-level
descriptions in a language like DAML-S. DAML-S siee profiles can be used to
query for service partners, as in the SDS, andkIL-S service grounding can be



used to connect the high-level description to comipation level protocols like
WSDL (see [8] for details), saving the final bingitno portTypes until runtime.
BPEL4WS engines could easily query repositoriessknvices using their built-in
communication-level functionality.

5.2 Adapting BPEL4W S for Automated Service Composition

Automating service composition with frameworks lIREEL4WS requires a more
substantial evolution, shifting its perspective aas execution framework for prede-
fined process models to that of an automated reaswrer abstract goals. Execution
plans devised to attain such goals must be adjestabexecution state changes.

Several working systems developed by researchettseirsemantic Web commu-
nity perform this function [22,24,20]. These franmelss share two key components
necessary to automate Web service compositionfildids a declarative representa-
tion of the capabilities of each Web service ineaantically well-defined language
that is computer interpretable, as employed bySB& or the modified version of
BPEL4WS suggested in Section 5.1. Further, thisriétion must abstractly describe
the service’s function as well as its form. WhileB_4WS’s predecessors, XLANG
and WSFL, had a well-defined semantics for desagilthe execution of a workflow,
to date BPEL4AWS has not been shown to maintain ghiperty. Adopting the
DAML-S ServiceModelwould shift the perspective of the interoperatimmework
towards being functionally-oriented on service pars. Partners could then be chosen
based on functional and operational constraintaddition to their communication-
level properties. In the case of the loan findingraple, theServiceModelwould
formally declare how the service functions, theeptitl side effects, and the neces-
sary preconditions so that automated reasoning imaghcould appropriately ma-
nipulate it to determine a composition. The runtiexecution of the model would be
determined by an automated reasoner within the BREL engine, allowing far
greater flexibility in successfully completing theer’s request. In a loan finding sce-
nario, for example, there are clearly many moresaayget a loan than the “assessor-
lender” model. The composition system could propdse example, an advance on
the user’s credit card, government subsidized tasgie, or other solutions that meet
the user’s objective but may be more financiallgidible or practical.

As implied above, the second necessary componemutomated Web service
composition is appropriate computational machinerymanipulate service descrip-
tions to produce a composition. All of the compiositwork from the Semantic Web
mentioned above employs such machinery operatingomme model with a formal
executional semantics. For example, Karmasim [Z8sureachability analysis over
Petri nets. Mcllraith and Son’s work [22] uses Bgoand a subset of first-order logic.
McDermott’'s work [20] likewise uses a logic-basedcemated reasoning system. All
of these approaches, while powerful, reveal theleefurther research, particularly
in integration with industrial efforts. Importantihowever, this work highlights the
spectrum of approaches interoperation frameworkddcemploy to increase their
power and flexibility.



6 Conclusion

Seamless interoperability among networked programs devices is critical for
Web services to provide an infrastructure for tlsown of ubiquitous computing. We
argued here that industry has taken us a stepsimifection with computing machin-
ery for automated service execution, while the SgimaVeb community has devel-
oped powerful representation and reasoning techgdbot has remained largely dis-
connected from the industrial effort. In acknowledwnt of the fact that Web service
technology will continue to evolve from emergingliistry standards, we developed
software from the bottom-up that extends industmachinery with Semantic Web
technology to enable automated service discoverstomization, and semantic trans-
lation. By integrating our technology, the indusitisystem gained the following capa-
bilities:

1. Automatic, runtime binding of service partners

2. Selection between multiple service partners basediser-defined preferences
and constraints

3. Integration of service partners with syntacticaligtinct but semantically trans-
latable service descriptions

We further argued that these capabilities appraheHimit of automated service
interoperation with current industrial machineryxtéhding manual composition
frameworks with automated composition machineryptamts provider-defined work-
flows with potentially undesirable recompositioAghieving automated Web service
composition requires a fundamental shift in indastframeworks from executing
predefined process models to computing and adaptiegution plans from abstract
objectives. In particular, in order for industryaohieve this shift, it is critical that:

1. Web service providers publish unambiguous, comguterpretable declarations
of Web service form and function, at a level ofadletommensurate with the task,
and in a language with a well-defined semantics

2. Web service interoperation frameworks embed autethatasoning technology
into their systems and specifications that is chpab reasoning about semantic
descriptions of Web services.

With the Semantic Web grounded in firm industrigbgort, we can begin to attain the

manifold benefits of fully integrated, Web-wide tiisuted computation.
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