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ABSTRACT

Manually querying search engines in order to accumulate a large
body of factual information is a tedious, error-prone process of
piecemeal search. Search engines retrieve and rank potentially rel-
evant documents for human perusal, but do not extract facts, assess
confidence, or fuse information from multiple documents. This pa-
per introduces KNOWITALL, a system that aims to automate the
tedious process of extracting large collections of facts from the web
in an autonomous, domain-independent, and scalable manner.

The paper describes preliminary experiments in which an in-
stance of KNowITALL, running for four days on a single machine,
was able to automatically extract 54,753 facts. KNOWITALL asso-
ciates a probability with each fact enabling it to trade off precision
and recall. The paper analyzes KNOWITALL s architecture and re-
ports on lessons learned for the design of large-scale information
extraction systems.

Categories and Subject Descriptors

1.2.7 [Artificial Intelligence]: Natural Language Processing—text
analysis; 1.2.6 [Artificial Intelligence]: Learning—knowledge ac-
quisition; H.3.3 [Information Systems]: Information Search and
Retrieval—search process

General Terms
Experimentation

Keywords

Information extraction, Mutual Information, Search.

1. INTRODUCTION AND MOTIVATION

Collecting a large body of information by searching the web
can be a tedious, manual process. Consider, for example, com-
piling a list of the humans who have visited space, or of the cities
in the world whose population is below 500,000 people, etc. Un-
less you find the “right” document(s), you are reduced to an error-
prone, one-fact-at-a-time, piecemeal search. To address the prob-
lem of accumulating large collections of facts, this paper introduces
Copyright is held by the author/owner(s).
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KNOWITALL, a domain-independent system that extracts informa-
tion from the web in an automated, open-ended manner.

KNOWITALL evaluates the information it extracts using statis-
tics computed by treating the web as a large corpus of text. KNOw-
ITALL leverages existing web search engines to compute these statis-
tics efficiently. Based on its evaluation, KNOWITALL associates a
probability with every fact it extracts, enabling it to automatically
trade recall for precision. In our experiments, KNOwWITALL ran for
four days and extracted over 50,000 facts regarding cities, states,
countries, actors, and films. We analyze the extraction rate and the
precision/recall achieved in this run in Section 3.

The remainder of this paper is organized as follows. We begin
by contrasting KNowITALL with previous work in Section 1.1. We
then introduce the main modules of KNowITALL and describe its
search engine interface, its infrastructure for information extraction
rules, its probabilistic assessment of extracted facts, and its mech-
anism for maintaining a focus of attention. The subsequent section
presents experimental results and lessons learned. We end with a
discussion of future work and a concise summary of our contribu-
tions.

1.1 PreviousWork

Whereas search engines locate relevant documents in response
to a query, web-based Question Answering (QA) systems such as
Mulder [17], AskMSR [2], Radev’s work [22], and others locate
potentially relevant answers to individual questions but are not de-
signed to compile large bodies of knowledge.

Much of the previous work on Information Extraction (IE) has
focused on the use of supervised learning techniques such as hid-
den Markov Models [12, 25], rule learning [27, 26], or Conditional
Random Fields [20]. These methods have typically been applied
to small corpora such as a collection of news wire stories or the
CMU seminar announcements corpus, and have difficulty scaling
to the Web. These techniques learn a language model or a set of
rules from a set of hand-tagged training documents, then apply the
model or rules to new texts. Models learned in this manner are ef-
fective on documents similar to the set of training documents, but
extract quite poorly when applied to documents with a different
genre or style. As a result, this approach has difficulty scaling to
the Web due to the diversity of text styles and genres on the web
and the prohibitive cost of creating an equally diverse set of hand-
tagged documents. Wrapper induction systems [16, 15] are able to



learn extraction patterns with a small amount of training, but op-
erate only on highly structured documents and cannot handle the
unstructured text that KNowITALL exploits.

The TREC conference has introduced a “list” track where an-
swering a question requires finding all instances of a specific sub-
class such as “10 movies starring Tom Cruise” [29]. One key dif-
ference between the TREC systems and KNOWITALL is that the
TREC systems extract information from relatively small corpora
of newswire and newspaper articles, while KNOWITALL extracts
information from the Web. As a result, top performing systems in
TREC (e.g., [21]) focus on “deep” parsing of sentences and the pro-
duction of logical representations of text in contrast with the lighter
weight techniques used by KNOWITALL.

Recent IE systems have addressed scalability with weakly su-
pervised methods and bootstrap learning techniques. KNOwITALL
uses a novel form of bootstrapping that does not require any man-
ually tagged training sentences. Other bootstrap IE systems such
as [24, 1, 5] still require a small set of domain-specific seed in-
stances as input, then alternately learn rules from seeds, and further
seeds from rules. Instead, KNOWITALL begins with a domain-
independent set of generic extraction patterns from which it in-
duces a set of seed instances.

Another distinctive feature of KNOWITALL is its use of Turney’s
PMI-IR methods [28] to assess the probability of extractions using
“web-scale statistics”. This overcomes the problem of maintaining
high precision, which has plagued bootstrap IE systems. Another
system that uses hit counts for validation is the question answer-
ing system of [19], but their technique of getting hit counts for a
specially constructed validation pattern is restricted to question-
answer pairs.

KNOWITALL is able to use weaker input than previous IE sys-
tems in part because, rather than extracting information from com-
plex and potentially difficult-to-understand texts, KNOWITALL re-
lies on the scale and redundancy of the web for an ample supply of
simple sentences that are relatively easy to process. This notion of
“redundancy-based extraction” was introduced in Mulder [17] and
further articulated in AskMSR [2].

Several previous projects have attempted to automate the collec-
tion of information from the web with some success. Information
extraction systems such as Google’s Froogle®, Whizbang’s flip-
dog?, and Eliyon® have collected large bodies of facts but only in
carefully circumscribed domains (e.g., job postings) and only after
extensive, domain-specific hand tuning. In contrast, KNOWITALL
is domain independent and highly automated.

Semantic tagging systems, notably SemTag [8], perform a task
that is complementary to that of KNOWITALL. SemTag starts with
the TAP knowledge base and computes semantic tags for a large
number of Web pages. KNOWITALL’s task is to automatically ex-
tract the knowledge that SemTag takes as input.

KNOWITALL was inspired, in part, by the WebKB project [6, 7]
and its motivation. However, the two projects rely on a different ar-
chitecture and very different learning techniques. Most important,
WebKB relies on supervised learning methods that take as input la-
beled hypertext regions, whereas KNOWITALL employs unsuper-
vised learning methods that extract facts by using search engines to
home in on easy-to-understand sentences scattered throughout the
Web.

froogl e. googl e. com
2www. f 1 i pdog. com
Shttp://ww. el i yon. com

2. KNOWITALL

KNOWITALL is an autonomous system that extracts facts, con-
cepts, and relationships from the web. KNOWITALL is seeded with
an extensible ontology and a small number of generic rule tem-
plates from which it creates text extraction rules for each class
and relation in its ontology The system relies on a domain- and
language-independent architecture to populate the ontology with
specific facts and relations. KNOWITALL is designed to support
scalability and high throughput. Each KNowITALL module runs
as a thread and communication between modules is accomplished
by asynchronous message passing.

KNowITALL’s main modules are described below:

e Extractor: KNOWITALL instantiates a set of extraction rules
for each class and relation from a set of generic, domain-
independent templates. For example, the generic template
“NP1 such as NPList2” indicates that the head of each sim-
ple noun phrase (NP) in NPList2 is an instance of the class
named in NP1. This template can be instantiated to find city
names from such sentences as “We provide tours to cities
such as Paris, Nice, and Monte Carlo.” KNowITALL would
extract three instances of the class G t y from this sentence.

e Search Engine Interface: KNOWITALL automatically for-
mulates queries based on its extraction rules. Each rule has
an associated search query composed of the keywords in the
rule. For example, the above rule would lead KNOWITALL
to issue the query “cities such as” to a search engine, down-
load each of the pages named in the engine’s results in par-
allel, and apply the Extractor to the appropriate sentences on
each downloaded page. KNOwITALL makes use of up to 12
search engines including Google, Alta Vista, Fast, and oth-
ers.

e Assessor: KNOWITALL uses statistics computed by query-
ing search engines to assess the likelihood that the Extrac-
tor’s conjectures are correct. Specifically, the Assessor uses a
form of pointwise mutual information (PMI) between words
and phrases that is estimated from web search engine hit
counts in a manner similar to Turney’s PMI-IR algorithm
[28]. For example, suppose that the Extractor has proposed
“Liege” as the name of a city. If the PMI between “Liege”
and a phrase like “city of Liege” is high, this gives evidence
that “Liege” is indeed a valid instance of theclass Ci t y. The
Assessor computes the PMI between each extracted instance
and multiple phrases associated with cities. These mutual
information statistics are combined via a Naive Bayes Clas-
sifier as described in Section 2.3.

e Database: KNowlITALL stores its information (including
metadata such as the rationale for and the confidence in indi-
vidual assertions) in a commercial RDBMS. This design de-
cision has several advantages over the ad-hoc storage schemes
of many systems — the database is persistent and scalable,
supporting rapid-fire updates and queries.

Figure 1 provides pseudocode that shows how these modules are
integrated. KNOWITALLsinput is a set of classes and relations that
constitute an information focus and a set of generic rule templates.
KNOWITALL begins with a bootstrap learning phase, where it in-
stantiates a set of extraction rules for each class or relation in the
information focus and trains the Naive Bayes Classifier for the As-
sessor. After this bootstrap phase, the Extractor begins finding in-
stances from the web, and the Assessor assigns probability to each
instance. At each cycle of this main loop, KNOwITALL allocates



KNOW TALL(i nformation focus |, rule tenplates T)

Set rules R queries Q and discrimnators D using BootStrap(l,T)
Do until queries in Q are exhausted {

ExtractionCycle(R, Q D)

}
ExtractionCycle(rules R, queries Q discrimnators D)
{
Set nunber of downl oads for each query in Q
Send queries selected from Q to search engines
For each webpage w returned by search engi nes {
Extract fact e fromw using the rule associated with the query
Assign probability p to e using Bayesian classifier based on D
Add (e, p) to the Database
}
Boot Strap(information focus I, rule tenplates T)
R = generate rules fromT for each predicate in |
Q = generate queries associated with each rule in R
D = generate discrimnators fromrules in R class nanmes in |
Do ExtractionCycle(R Q D) wi thout adding facts to Dat abase
S = select extractions with high average PM score as seeds
Use S to train Bayesian classifier for the discrimnators
D = select k best discrimnators for each class in |
}

Figure 1: High-level pseudocode for KNOWITALL.

system resources to favor the most productive class or relation, and
to decide when seeking more instances would be unproductive as
described in Section 2.5. KNowITALL also does Recursive Query
Expansion as described in Section 3.4. We now consider several of
the above modules in more detail.

2.1 Interfaceto Search Engines

Etzioni [10] introduced the metaphor of an Information Food
Chain where search engines are herbivores “grazing” on the web
and intelligent agents are information carnivores that consume out-
put from various herbivores. In terms of this metaphor, the KNOw-
ITALL system is an information carnivore that consumes the output
of existing search engines.

Building KNowITALL as an information carnivore eliminated
the need to duplicate the effort and infrastructure required to run a
commercial-scale web search engine and repeatedly crawl the web
over time. Thus, the cost, time, and effort to build KNOWITALL
were slashed. Furthermore, KNOWITALL automatically benefits
from the private sector investment in and the improvement to the
web’s search engines over time.

Since it would be inappropriate for KNOWITALL to overload the
underlying search engines, we limit the number of queries KNow-
ITALL issues per minute. Subject to this constraint, we use two
techniques to maximize KNOwITALL’s throughput. First, we rely
on multiple search engines including Google, Alta Vista, and Fast,
and we alternate queries between them ensuring that any single en-
gine receives at most one query in any ten second interval. Sec-
ond, we cache search engine result pages, thus we avoid querying
a search engine when the results of that query are known.

We are in the process of incorporating an instance of the Nutch
open-source search engine into KNOWITALL in order to eliminate
KNOWITALL’s query limit. However, Nutch’s index will be one
to two orders of magnitude smaller than those of commercial en-
gines, so KNowITALL will likely continue to depend on external
search engines to some extent. Effectively, we are in the process

of transforming KNowITALL from a carnivore to an information
omnivore.

We now describe the design of KNOwWITALL’s Extractor and As-
sessor modules both of which rely exclusively on the search engine
interface to retrieve information from the web.

2.2 Extractor

KNowITALL has a fully automated mechanism for extracting in-
formation from the web. Whenever a new class or relation is added
to KNOWITALL’s ontology, the Extractor uses generic, domain-
independent rule templates to create a set of information extraction
rules for that class or relation. A sample of the syntactic patterns
that underlie KNOWITALL’s rule templates is shown below:

NP1 {“”} “such as” NPList2
NP1 {“,"}*and other” NP2
NP1 {“"}“including” NPL.ist2
NP1 “is a” NP2

NP1 “is the” NP2 “of” NP3
“the” NP1 “of” NP2 “is” NP3

Some of our rule templates are adapted from Marti Hearst’s hy-
ponym patterns [13] and others were developed independently.

To see how these patterns can be used as extraction rules, sup-
pose that NP1 in the first pattern is bound to the name of a class in
the ontology. Then each simple noun phrase in NPList2 is likely
to be an instance of that class. When this pattern is used for the
class Count ry it would match a sentence that includes the phrase
“countries such as X, Y, and Z” where X, Y, and Z are names of
countries. The same pattern is used to generate rules to find in-
stances of the class Act or, where the rule looks for “actors such
as X, Y, and Z”. The {“,”} in the patterns shown above indicates an
optional comma after NP1.

In using these patterns as the basis for extraction rule templates,
we add syntactic constraints that look for simple noun phrases (a
nominal preceded by zero or more modifiers). NP1, NP2, and so
forth must be simple noun phrases and NPList1 or NPList2 must be



a list of simple NPs. Rules that look for proper names also include
an orthographic constraint that tests capitalization. To see why
noun phrase analysis is essential, compare these two sentences.

A) “Chinais a country in Asia.”
B) “Garth Brooks is a country singer.”

In sentence A the word “country” is the head of a simple noun
phrase, and China is indeed an instance of the class Count ry. In
sentence B, noun phrase analysis can detect that “country” is not
the head of a noun phrase, so Garth Brooks won’t be extracted as
the name of a country.

Rul e Tenpl at e:
NP1 "such as" NPList2
& head(NP1) = plural (name(d assl))
& proper Noun( head(each(NPLi st 2)))
=>
i nstance (C assl, head(each(NPLi st2)))

Figure 2: This generic rule template is instantiated for a partic-
ular class in the ontology to create an extraction rule that looks
for instances of that class.

Let’s consider a rule template (Figure 2) and see how it is in-
stantiated for a particular class. The Extractor generates a rule for
Count ry from this rule template by substituting “Country” for
“Class1”, plugging in the plural “countries” as a constraint on the
head of NP1. This produces the rule shown in Figure 3. The Ex-
tractor then takes the literals of the rule as the “keywords” of the
rule, which KNOwITALL sends to a search engine as a query, in
this case the search query is the phrase “countries such as”.

Extraction Rul e:

NP1 "such as" NPList2

& head(NP1)="countries"

& proper Noun( head(each(NPLi st 2)))

=>

i nstanceO (Country, head(each(NPLi st2)))
keywords: "countries such as"

Figure 3: This extraction rule looks for web pages containing
the phrase “countries such as”. It extracts any proper nouns
immediately after that phrase as instances of Country.

Thus, KNOWITALL forms the appropriate extraction rule, gen-
erates queries, and sends them to the web. When the search engine
retrieves a web page for a query, the Extractor applies the extrac-
tion rule associated with that query to any sentences in the web
page that contain the keywords. The Extractor uses the Brill tagger
[4] to assign part-of-speech tags and identifies noun phrases with
regular expressions based on the part-of-speech tags.

The Extractor matches the rule in Figure 3 to each tagged sen-
tence. NP1 matches a simple noun phrase; it must be immedi-
ately followed by the string “such as”; following that must be a
list of simple NPs. If the match is successful, the Extractor applies
constraints from the rule. The head of NP1 must match the string
“countries”. The Extractor checks that the head of each NP in the
list NPList2 has the capitalization pattern of a proper noun. Any
NPs that do not pass this test are ignored. If all constraints are met,
the Extractor creates one or more extractions: an instance of the
class Count ry for each proper noun in NPList2. The BNF for
KNOWITALL’s extraction rules appears in Figure 5.

The rule in Figure 3 would extract three instances of Count ry
from the sentence “We service corporate and business clients in all
major European countries such as Great Britain, France, and Ger-
many.” If all the tests for proper nouns fail, nothing is extracted, as

in the sentence “Detailed maps and information for several coun-
tries such as airport maps, city and downtown maps”.

The Extractor can also utilize rules for binary or n-ary relations.
Figure 4 shows a rule that finds instances of the relation:

pl aysFor (At hl et e, Sport sTeam

This particular rule has the second argument bound to an instance
of SportsTeam, “Seattle Mariners”, which KNOWITALL has pre-
viously added to its Database. We are currently developing algo-
rithms to automatically learn such rules.

Extraction Rule for a Binary Rel ation:

NP1 "plays for" NP2

& proper Noun( head(NP1))

& head(NP2)="Seattl e Mariners"

=>

i nstanceO (At hl et e, head( NP1))

& instanceO (Sport sTeam head( NP2))

& pl aysFor (head( NP1), head( NP2))

keywords: "plays for", "Seattle Mariners"

Figure 4: This extraction rule finds instances of athletes that
play for a sports team. The second argument is bound such
that it looks for athletes that play for the Seattle Mariners.

2.3 Probabilistic Assessment

Information extraction from the web is a difficult, noisy process.
In order to improve its precision, KNOWITALL assesses the prob-
ability of every extraction generated by the Extractor. Specifically,
the Assessor measures co-occurrence statistics of candidate extrac-
tions with a set of discriminator phrases. For example, if Cuba
Gooding is an Actor, then we would expect the phrase “Cuba Good-
ing starred in” to be more prevalent on the web than if he has never
acted. Thus, “X starred in” is a pattern for a discriminator phrase.

Previous research on statistical natural language processing has
shown that co-occurrence statistics are highly informative when
computed over large corpora [3]. We use search engine hit counts
(i.e., the number of results returned in response to a queries such
as “Cuba Gooding starred in” or “city of Tomsk™) as a means of
efficiently computing co-occurrence statistics over the billions of
web pages indexed by search engines. This is what we mean by
“web-scale statistics”.*

We automatically generate several discriminator phrases from
class names and from the keywords of extraction rules.® The class
Actor has discriminator phrases in which the instance term occurs
adjacent to the class hame “actor” or the keyword phrase from an
extraction rule. An example is the discriminator “actors such as
X", where the candidate instance replaces X in the discriminator
phrase.

The underlying intuition here is that web-scale statistics such as
the hit counts for discriminator phrases is likely to be a feature that
helps to distinguish instances of a class from non-instances. Ma-
chine learning researchers have long understood that the choice of
appropriate features often matters more than the particular learning
algorithm employed. In fact, the exact choice of features for assess-
ment is subtle and we evaluated several possibilities; we present our
experience in Section 3.2.

“We are aware that these hit counts can be quite inaccurate, but
have found them to be useful in practice. After incorporating Nutch
into KNOWITALL, we will compare the quality of the statistics
obtained from commercial search engines with those returned by
Nutch computed over a much smaller portion of the Web.

5In addition, we are incorporating techniques for learning new dis-
criminators.



<rul e> = <pattern>

<pattern> =

<cont ext > = ' " string "’
<sl ot > = ("NP <d> | ’'NPList’<d> |
<d> o= digit

<constraints> ::= (& <constr>)*
<constr> = <phrase> = '"’' string
<phr ase> = '"NP'<d>| 'P <d> |

<constrai nt s> <bi ndi ngs> <keywor ds>
(<context>) (<slot> <context>)* <sl|ot> (<context>)

=3 <d>)

" proper Noun(’ <phrase> ")’

"head(NP' <d> ')’ |

"each(NPList’ <d> ')’ | 'head(each(NPList’ <d> "))’
<bi ndi ngs> = '=> instanceO (' <class>"',’ <phrase> ')’ |
"=> jnstanceO (' <class>"',’' <phrase> ')’
(" & instanceOf (' <class>',’ <phrase> ')’)*
& <pred> ' (' <phrase> (',’ <phrase>)* ')’
<cl ass> = string
<pred> = string
<keywor ds> = ’'Keywords:' ( '"' string "' )*

Figure 5: BNF description of the extraction rule language. An extraction pattern alternates context (exact string match) with slots
that can be a simple noun phrase (NP), a list of NPs, or an arbitrary phrase (P). Constraints may require a phrase or its head to
match an exact string or to be a proper noun. The “each” operator applies a constraint to each simple NP of an NPList. Rule
bindings specify how extracted phrases are bound to predicate arguments. Keywords are formed from literals in the rule, and are

sent as queries to search engines.

The features chosen are combined using a “naive Bayesian” prob-
ability update [9]. Given n observed features fi ... f,, which are
assumed conditionally independent, the Assessor uses the follow-
ing equation to calculate the expected truth of an atomic formula

¢:

P(p)I1; P(fil¢)

PO o 1) = BT PI0) + PO T, PUITS)

®

In this equation, P(¢) is the prior probability of the fact.° The ex-
pression P(f;|¢) denotes the probability of observing feature f;
if ¢ is in fact true, and P(f;|—¢) denotes the probability of ob-
serving feature f; if ¢ is not true. The denominator of equation 1
normalizes the probability.

In a naive Bayesian classifier all that matters is whether P(¢) >
0.5; if the fact is more likely to be true than false, it is classified as
true. However, since we are operating in an information retrieval
context, we wish to be able to trade precision against recall. Thus
we record the numeric probability values with extracted facts; by
raising the threshold required for a fact to be deemed true, we in-
crease precision and decrease recall — lowering the threshold has
the opposite effect.

Since the naive Bayes formula is notorious for producing po-
larized probability estimates that are close to zero or to one, the
estimated probabilities are often inaccurate. However, as [9] points
out, the classifier is surprisingly effective because it only needs to
make an ordinal judgment (which class is more likely) to classify
instances correctly. Similarly, our formula produces a reasonable
ordering on the likelihood of extracted facts for a given class. This
ordering is sufficient for KNOwITALL to implement the desired
precision/recall tradeoff.

Discriminator phrases can also be used to validate binary predi-
cates. A binary discriminator includes both argument values of the
instance as a phrase, possibly with additional terms. For example
the predicate Stars-In(Actor, Film) might have discriminators such
as “X in Y” or simply “X Y”, where X is replaced by the actor’s
name and Y by the film. The phrases “Harrison Ford in Star Wars”
and “Harrison Ford Star Wars” will have relatively high hit counts,
while “Harrison Ford in Jurassic Park” and “Harrison Ford Juras-

5This prior probability is a function of the extraction rule’s previous
success in producing high-probability instances.

sic Park” have hardly any hits. The Assessor’s Bayesian classifier
combines evidence from binary discriminators with the probability
that each argument in a binary predicate is of the proper class.

2.4 Bootstrapping

In order to estimate the probabilities P(f;|¢) and P(fi|—¢),
KNOWITALL needs a training set of positive and negative instances
of the target class. We want our method to scale readily to new
classes, however, which requires that we minimize the amount of
hand-entered training data. To achieve this goal we rely on a boot-
strapping technique that induces seeds from generic extraction pat-
terns and automatically-generated discriminator phrases.

Bootstrapping begins by instantiating a set of extraction rules
and queries for each predicate from generic rule templates, and also
generates a set of discriminator phrases from keyword phrases of
the rules and from the class names. We found it best to supply
the system with two names for each class, such as “country” and
“nation” for the class Count ry. This compensates for inherent
ambiguity in a single name: “country” might be a music genre or
refer to countryside; instances with high mutual information with
both “country” and “nation” are more likely to have the desired
semantic class.

Bootstrapping selects seeds by first running an extraction cycle
to find a set of at least . proposed instances of the class, then select-
ing m instances from those with highest average PMI.” The seeds
are then used to train conditional probabilities for the discrimina-
tors, with an equal number of negative seeds taken from among
the positive seeds for other classes. Bootstrapping selects the best
k discriminators to use for its Assessor, favoring those with the
best split of positive and negative instances. We used n = 200,
m = 20, and k = 5 in experiments reported in this paper.

This bootstrap process may be iterated: first finding a set of seeds
with high average PMI over all generic discriminator phrases; using
these seeds to train the discriminators; selecting the & best discrim-
inators; finding a new set of seeds with high PMI over just those &
discriminators.

We were successful in finding seeds automatically for some of
the classes, but found it helpful to manually discard a small number
of the seeds for the class Count ry (e.g., “NATO” and “Iroquois™)

"Using equation 2 (as described in Section 3.2.2).



and also some seeds for the class Fi | m(e.g., actor or director’s
names). Thus, the bootstrap process utilized minimal human effort,
but we believe that with additional work it can be fully automated.

2.5 Extraction Focus

Since KNOWITALL has multiple classes and relations in its on-
tology, focus of attention becomes an important issue. Within a
set of classes and relations, some will have a large set of instances
on the web and KNOwWITALL can productively continue to search
for an extended length of time. For other classes, there are a lim-
ited number of instances to find, and it is important for KNoOw-
ITALL to know when to stop searching for more instances. An ex-
treme example of this is searching for names of U.S. states, where
KNowITALL might find all 50 states in a matter of minutes, but
would happily go on finding thousands of extractions that the As-
sessor would give very low probability of being correct, or even
mis-classify as “new” states.

At the beginning of each iteration of the extraction cycle shown
in Figure 1, KNowITALL computes the number of high probability
extractions for each class or relation in the previous cycle. The
number of downloads allocated to each class or relation in the new
cycle is proportional to its yield in the previous cycle, where yield
is the number of high probability extractions divided by the number
of downloads.

Another metric that guides KNowITALL s resource allocation is
the signal-to-noise ratio of each class or relation. This is defined as
the ratio of extractions with high probability to extractions with low
probability. In the experiments described here, we set the threshold
for high probability to 0.90 and for low probability to 0.10. When
this ratio falls below 0.05 for the most recent100 extractions for a
given class or relation, KNOWITALL is finding more than twenty
times as many errors as good extractions, and ceases searching for
more instances, thereby shifting to a more productive focus. An
experiment that shows the effectiveness of this policy is described
in Section 3.1.

3. LESSONSLEARNED

Although KNOWITALL is “young”, we have already learned a
number of valuable lessons regarding the design of such systems.
We have also recorded several measurements that help to better un-
derstand the system’s performance at this early stage.

3.1 Termination Criterion

Our preliminary experiments demonstrated that KNOWITALL
needs a policy that dictates when to stop looking for more instances
of a class. For example, if the system continues finding new ex-
tractions after it has all 50 states or has over 300 countries, what
it finds will be almost entirely errors. This would have a harm-
ful effect on efficiency—if KNoOwITALL wasted 40% of its search
effort on USState and Country, it would find roughly 40% fewer
instances of other classes. Finding thousands of spurious instances
can also overwhelm the Assessor and degrade KNOWITALL’S pre-
cision. To address this problem, KNOWITALL terminates extrac-
tions for a class when it reaches its Signal-To-Noise ratio (STN)
cutoff on the most recent 100 extractions for that class (Section
2.5). We now consider the impact of STN on KNOWITALL’s per-
formance.

We use the standard metrics of precision and recall to quantify
KNOWITALL’s performance. At each probability p assigned by the
Assessor, we count the number of correct extractions at or above
probability p. This is done by first comparing the extracted in-
stances automatically with an external knowledge base, the Tipster
Gazetteer. We manually check a sample of instances not found in
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Figure 6: A comparison of USSt ate and Country with
signal-to-noise cutoff (STN) and without. Stopping the search
for more instances when STN falls below 0.05 not only aids ef-
ficiency, but also improves precision.

the Gazetteer to ensure that they were not marked as errors due to
alternate spellings or omissions in the Gazetteer.

Precision at p is the number of correct extractions divided by the
total extractions at or above p. Recall at p is defined as the num-
ber of correct extractions at or above p divided by the total correct
extractions at all probabilities. Note that this is recall with respect
to sentences that the system has actually seen, and the extraction
rules it utilizes, rather than a hypothetical, but unknown, number of
correct extractions possible with an arbitrary set of extraction rules
applied to the entire web. This metric is consistent with the recall
metric used in TREC conferences: only count correct instances that
are in the data collection actually processed by a system.

Figure 6 shows the impact of the signal-to-noise (STN) cutoff.
The top curve is for USSt at e where KNOWITALL automatically
stopped looking for further instances after the STN ratio fell below
a pre-set threshold of 0.05 after finding 371 proposed state names.
The curve just below that is for USSt at e when KNowITALL kept
searching and found 3,927 proposed state names. In fact, none of
the states found after the first few hours were correct, but enough of
the errors fooled the Assessor to reduce precision from 1.0 to 0.98
at the highest probability. The next two curves show Country
with and without STN. KNowITALL found 194 correct and 357
incorrect country names before the STN ratio of the most recent
100 extractions fell below 0.05. Without STN, it found 387 cor-
rect countries, but also 2,777 incorrect extractions. The data point
at precision 0.88 and recall 0.76 with STN represents 148 correct
instances; without STN the point at precision 0.86 and recall 0.34
represents 130 correct instances. So our signal-to-noise policy is
less than perfect, but as the graph shows it was beneficial.

3.2 Featuresfor Probabilistic Assessment

We now consider a subtle and important question in KNOw-
ITALL’s design: given a set of discriminator phrases, what is the
best way to derive features for probabilistic assessment (see Sec-
tion 2.3). Choosing features involves two orthogonal choices:

e Hits vs. PMI: Is it better to use the quantity of discrimina-
tor hits returned by the search engine directly as a feature,
or should this quantity be normalized by dividing by the fre-
quency of the candidate instance?

e Density vs. Threshold: Is it better to treat the hit (or PMI)
numbers as a real-valued feature, generating a probability



density curve for all possible values, or should one convert
the quantities into a Boolean feature by applying a thresh-
old?

Below, we describe each of these options in more detail and re-
port on experiments comparing their impact on KNOWITALL’s pre-
cision and recall.

3.2.1 Normalization

Let 7 and D represent the instance and discriminator phrase, re-
spectively. For example, if I = “Boston” then D might equal “city
of X”, which combines with I to form “city of Boston”. The sim-
plest statistical feature we considered is the number of hits returned
by a search engine for the query formed by concatenating D and
1, |Hits(D + I)|, (e.g., “city of Boston™). The problem with using
hit counts directly as a metric is a strong bias towards common in-
stances. For example, there are more hits for “city of California”
than there are for many obscure, but legitimate, cities.

In order to compensate for this bias, we considered dividing by
the frequency of the instance 7. Following Turney [28], we com-
pute the pointwise mutual information (PMI) between the candidate
instance and a discriminator phrases as

[Hits(D + I)|
[Hits(I)| @
One potential problem with the PMI approach is homonyms —

words that have the same spelling, but different meanings. For ex-

ample, Georgia refers to both a state and country, Normal refers
to a city in Illinois and a socially acceptable condition, and Ama-
zon is both a rain forest and a on-line shopping destination. When

a homonym is used more frequently in a sense distinct from the

one we are interested in, then the PMI scores may be low and may

fall below threshold. This is because PMI scores measure whether
membership in the class is the most common meaning of a noun
denoting an instance, not whether membership in the class is a le-
gitimate but less frequent usage of that noun.

Since both raw hit and normalized (PMI) approaches are heuris-

tic, we evaluated their performance experimentally (Figure 7).

3.2.2 Resolution

Regardless of whether one normalizes by instance frequency,
one must choose whether to treat the feature as real-valued or dis-
crete. In the real-valued approach, one uses training examples to
estimate probabilities of P(f; = x|¢) and P(f; = z|—~¢) where x
ranges over all possible hit (or PMI) values. KNOWITALL uses
bootstrapping to find the set of training examples (Section 2.4).
It finds a set of n instances using extraction rules, computes PMI
scores for each discriminator-instance pair, selects the & instances
with highest average PMI score as positive training, and an equal
number negative examples are selected from positive examples of
other classes. We set k to 20 in the experiments reported here. Fit-
ting a curve to 20 points is difficult, especially when values may
range from 2000 to 15 million. In order to compute a meaningful
probability density function (PDF), we smooth using a Gaussian
kernel whose standard deviation equals that of the N = 20 posi-
tive training points {x;}.2

PMI(I, D) =

PDF ) = L3 L5 ©
fs@) =<y —=e 27
N = oV2m

8In future work, we will investigate the use of cross-validation to
select the Gaussian’s width and will consider other kernels which
might better match the heavy-tailed distributions we find on the
web.

Rather than using a continuous PDF, we could use a discretiza-
tion, the most extreme case being reduction to a Boolean feature. In
this approach one uses training data to compute a threshold value
which best splits positive and negative examples. One may then
compute the primitive probabilities P(f;|¢) and P(f;|—¢) that
are required by equation 1 by simple counting. There are sev-
eral ways to compute the requisite threshold. One method sim-
ply uses the probability density curves to find the value, x¢, where
P(fi = zo|l¢) = P(fi = mo|—¢). Another method selects the
threshold that provides the highest information gain (reduction in
entropy). A holdout set is then used to estimate the conditional
probability that the hit (or PMI) score will be above the threshold
given a positive (or negative) instance.

3.2.3 Evaluation

To evaluate which approach works best, we took a set of in-
stances of the class Ci ty from the Extractor and assigned prob-
abilities to it with four alternate versions of the Assessor, as shown
in Figure 7. One version used thresholds to form Boolean features
from unnormalized hit counts; a second used a continuous prob-
ability density function based on unnormalized hit counts; a third
used thresholds on normalized hit counts (PMI scores); the fourth
used a probability function based on PMI scores. We computed
precision and recall as described in Section 3.1.

The Assessors that use raw hit counts have a strong bias to give
high probability to instances that appear on a large number of web
pages, whether or not they are an instance of the target class. More
obscure instances tend to be given low probability. The Assessors
that use PMI scores normalize for the number of hit counts of the
instance, and have better overall performance than those based on
raw hit counts.

It was not clear, a priori, whether PDF or thresholding would
give better results. Our experimental results show that a simple
threshold on PMI scores gives better results than PDF equation 3.
The PDF curve does nearly as well as the curve with threshold-
ing up to recall 0.75, then drops sharply. We are now experiment-
ing with alternative formulations which may improve the density
method.

One reason for this is that the Bayesian update equation 1 does
not depend so much on the value of P(f;|¢) and P(f;|—¢) as on
the ratio between these conditional probabilities. The threshold-
based assessors give a fixed ratio between these probabilities for
values above the threshold and another ratio for values below the
threshold. Equation 3 computes P(f;|¢) and P(f;|—-¢) indepen-
dently without control of the critical ratio between the two func-
tions. This ratio tends to be very high or very low, giving probabil-
ities of nearly 1.0 or nearly 0.0.

3.3 Precision/Recall Experiments

Having refined and extended KNOWITALL as described above,
we ran an experiment to evaluate its performance. We were par-
ticularly interested in quantifying the impact of the Assessor on
the precision and recall of the system. The Assessor assigns prob-
abilities to each extraction. These probabilities are the system’s
confidence in each extraction and can be thought of as analogous
to a ranking function in information retrieval: the goal is for the
set of extractions with high probability to have high precision, and
for the precision to decline gracefully as the probability threshold
is lowered. This is, indeed, what we found.

We ran the system with an Information Focus consisting of five
classes: City, USState, Country, Actor, and Fil m The
first three had been used in system development and the last two,
Actor and Fi | m were new classes. The Assessor used PMI
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Figure 7: Precision-recall curves for instances of theclass Ci t y
using four different types of features for a Bayesian probability
update: thresholding of raw hit counts or of normalized hit
counts (PMI scores), continuous density function for raw hit
counts or PMI scores.

score thresholds as Boolean features to assign a probability to each
extraction, with the system selecting the best five discriminator
phrases as described in Section 2.3.

To compute precision and recall, we first compared the extracted
instances automatically with an external knowledge base, the Tip-
ster Gazetteer for locations and the Internet Movie Database (IMDB)
for actors and films. We manually checked any instances not found
in the Gazetteer or the IMDB to ensure that they were indeed er-
rors. See Section 3.1 for more details on how precision and recall
were computed.

KNoOwITALL quickly reached the point where the signal-to-noise
ratio indicated that nearly all new instances of the classes USSt at e
and Count r y were extraction errors. When the ratio of instances
with probability > 0.90 to instances with probability < 0.10 fell
below a threshold of 0.05, KNowITALL stopped looking for more
instances of the class. The classes Ci t y, Act or, and Fi | mcon-
tinued for four days until reaching the signal-to-noise cutoff.

Figures 8 and 9 show precision and recall at the end of four days.
Each point on the curves shows the precision and recall for extrac-
tions with probability at or above a given level. For example, the
data point on the curve for Ci t y with precision 0.99 and recall of
0.19 represents extractions with probability above 0.91. The curve
for Ci t y has precision 0.98 at recall 0.76, then drops to precision
0.71 at recall 1.0. The curve for USSt at e has precision 1.0 at re-
call 0.98; Count ry has precision 0.97 at recall 0.58, and precision
0.79 at recall 0.87.

Performance on the two new classes (Act or and Fi | m) was on
par with the geography domain we used for system development.
The class Act or has precision 0.96 at recall 0.85. KNOwWITALL
had more difficulty with the class Fi | m where the precision-recall
curve was fairly flat, with precision 0.90 at recall 0.27, and preci-
sion 0.78 at recall 0.57.

Our precision/recall curves also enable us to precisely quantify
the impact of the Assessor on KNOwITALL’s performance. If the
Assessor is turned off, then KNOwITALL’s output corresponds to
the point on the curve where the recall is 1.00. The precision,
with the Assessor off, varies between classes: for Ci ty itis 0.71,
USSt at e 0.96, Country 0.35, Fi | m0.49, and Act or 0.69.
Turning the Assessor on enables KNOWITALL to achieve substan-
tially higher precision at the cost of modestly lower recall. For ex-
ample, the Assessor raised the precision for Count ry from 0.35
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Figure 8: Precision and recall at the end of four days at vary-
ing probability thresholds for the classes G t y, USSt at e, and
Country.

to 0.79 at recall 0.87. In addition, the Assessor raised the preci-
sion for Ci t y from 0.71 to 0.98 at recall 0.76, and raised Act or
from 0.69 to 0.96 at recall 0.85. Overall, the Assessor is crucial to
KNOWITALL’s ability to accumulate high quality information.
The Assessor led KNOWITALL to only a small number of false
positives. Most of these extraction errors are of instances that are
semantically close to the target class. The incorrect extractions for
Count ry with probability > 0.80 were nearly all names of col-
lections of countries: “NAFTA”, “North America”, and so forth.
Some of the errors at lower probabilities were American Indian
tribes, which are often referred to as “nations”. Common errors for
the class Fi | mwere names of directors, or partial names of films
(e.g., a film named “Dalmatians” instead of “101 Dalmatians”).
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Figure 9: Precision and recall at the end of four days for two
new classes: Act or and Fi | m

The Assessor had more trouble with false negatives than with
false positives. A majority of the instances at the lowest probabil-
ities are incorrect extractions, but many are actually correct. An
instance that has a relatively low number of hit counts will often
fall below the PMI threshold for discriminator phrases, even if it is
a valid instance of the class. An instance receives a low probability
if it fails more than half of the discriminator thresholds, even if it is
only slightly below the threshold each time.

The errors described above suggest opportunities to further im-
prove KNOWITALL as we discuss in Section 4.



3.4 Recursive Query Expansion

As mentioned earlier, KNOWITALL is an information carnivore.
While this design decision saved us the effort and cost of main-
taining a web search engine, KNOWITALL’s reliance on existing
search engines creates its own set of challenges. The biggest of
these challenges stems from the fact that search engines only make
a small fraction of their results accessible to users. For example,
Google reports 229,000 hits in response to the query “cities such
as”, but only makes the top-ranked 1,000 or so URLSs available ex-
ternally®. Naturally, if KNOWITALL were restricted to examining
only 1,000 web pages, that would substantially reduce its “yield”
from any given extraction pattern.

To solve this problem, KNowITALL uses a simple algorithm that
we call Recursive Query Expansion (RQE) to coax a search engine
to return most if not all of its results. In essence, the algorithm
recursively partitions the set of results returned by the engine until
the set is small enough so that it can be fully retrieved.

More precisely, RQE recursively expands the original query g by
creating two new queries:

q = qu
q// — q —w
where w is a word chosen from a pre-specified list of words. ¢ —w
is a query for pages where ¢ is present and w is absent. \We draw
the words for RQE from the frequency ordered list of words at

www. conp. | ancs. ac. uk/ ucrel /bncfreq/flists. htnl.

RQE continues adding new words to the query from the list until the
number of pages returned in response to a query is at most 1,000.°
At that point, KNOwITALL can retrieve the full set of result URLs
from the search engine. KNOWITALL is constrained so that queries
q' and ¢” are always routed to the same search engine as gq.
Clearly, some algorithm like RQE is necessary for any informa-
tion carnivore to access any set of search engine results that ex-
ceeds 1,000, but how well does it work in practice? There are two
measurements that we are interested in. First, what percentage of
the original result set does RQE retrieve? Ideally, that percentage
would be as close as possible to 100%. We have found that RQE re-
trieves 95.0% of the original result set. Second, how many queries
does that retrieval require? Each time a query is issued it returns up
to 100 URLs. Thus, the number of queries is minimized when du-
plicate URLSs are avoided and the “yield” of new URLS per query is
100. We have found that RQE yields an average of 75.0 new URLs

per query.

3.5 Extraction Rate

With RQE in place, KNOWITALL is able to continue learning
new facts over extended periods of time even with a relatively sim-
ple ontology. Figure 10 shows the number of web pages retrieved
over four days of active runtime. KNowITALL fetches new pages
at a fairly constant rate: a total of 313,349 web pages over 92 hours,
averaging a nearly one page per second.

KNOWITALL also consistently finds new facts on these retrieved
web pages, as shown in Figure 11. The curve has a steep slope at
first, when a large proportion of the extractions are new facts, about
one new fact for every 3 web pages over the first 10,000 pages. The
number of new facts extracted per web page decreases somewhat

9This restriction applies whether one scrapes results from the
Google web site or uses the XML API.

19To ensure that queries do not exceed the limits imposed by search
engines on query length, RQE stops if the length of its query
reaches that limit. In our experiments, RQE encountered this limit
only 0.10% of the time.
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Figure 10: Web pages retrieved versus time over a four-day
run.
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Figure 11: New facts (not previously extracted) versus web
pages retrieved over the four-day run shown in Figure 10.

as the run progresses due to increasing repetition of facts learned
previously. The extraction rate slows to one new fact in about 7 web
pages between 100,000 and 300,000 pages. In concert, Figures 10
and 11 suggest that KNOWITALL is meeting its scalability goal, at
least for experimental runs of the scope reported in this paper.

4. FUTURE WORK

We plan to extend KNOWITALL in several important ways to
further investigate to what extent we can reach the goal of devel-
oping a completely open-ended, extensible, information-extraction
system.

KNOWITALL currently relies on a set of domain-independent
extraction rules. To improve its recall, KNowlITALL would ben-
efit from the addition of domain-specific extraction rules. We are
currently implementing an algorithm for learning large numbers of
domain-specific rules based on the work of [23]. We will use this
learning algorithm both for extraction rules, and to learn domain-
specific discriminator phrases for the Assessor.

When KNOWITALL learns large numbers of rules, many subex-
pressions will be shared between rules. If one could be guaran-
teed that each such common subexpression was evaluated at most
once, KNOwITALL could apply the entire rule set on each web
page while avoiding tremendous amounts of wasted computation.
Fortunately, previous researchers have solved similar problems in
related areas. For example, the Knuth Morris Pratt string match-
ing algorithm avoids repeated passes over a string by compiling the
pattern into a finite-state machine. XScan, our incremental XML
query processing algorithm, uses a similar compilation scheme on



streaming data [14]. Finally, RETE matching has been successfully
applied to the problem of matching large sets of production rules
against a working memory database [11]. In our case, we could
compile rules into a form of augmented transition network designed
for bottom-up processing. By adapting techniques from the Knuth
Morris Pratt algorithm, we plan to integrate the syntactic and pat-
tern matching functionality. Our need for lightweight processing
will be satisfied by augmenting some of the transitions with tags
which initiate tokenizing, part-of-speech tagging, and other forms
of syntactic parsing on specific textual substrings.

KNOWITALL’s ontology is currently fixed — the system popu-
lates the ontology but does not yet learn new classes or new rela-
tions. We are currently exploring methods to automatically extend
the ontology. A promising approach is to use domain-independent
extraction rules to identify new classes in a given domain. We could
use a rule template like the one in Figure 2 to suggest new classes.
For the class Sci enti st, for example, we may find sentences
such as “scientists such as chemists, physicists, and biologists” that
suggest Chemni st , Physi ci st, and Bi ol ogi st as new sub-
classes.

Our goal in ontology extension is akin to Doug Lenat’s AM and
Eurisko systems [18] that automatically extended their knowledge
to new predicates using heuristic search. AM and Eurisko, how-
ever, used the heuristics in conjunction with logical combinations
of known sets and functions to produce new sets/functions. KNOw-
ITALL can use the web and web-scale statistics to guide the process
of discovering new knowledge.

One lesson from the work on AM and Eurisko is the importance
of judiciously focusing on the appropriate predicates in an exten-
sible system. Otherwise, a system like KNOwITALL has the po-
tential to extend its ontology in uninteresting directions and learn
vast amounts of useless information. We are investigating ways to
determine the relevance of a new predicate to the domain of in-
terest (e.g., geography) before deciding to use that class, and we
are looking at ways to determine how useful a new predicate is.
For example, extracting “museum” in the geography domain will
not be relevant, even though it may appear useful because it yields
many new instances. On the other hand, we might extract the class
“statistics” in the baseball domain and determine that it is quite rel-
evant, but we may not be able to find many instances of the class
using our extraction rules. We continue to investigate ways to guide
KNOWITALL to judge the usefulness of learned classes.

5. CONCLUSIONS

This paper introduced the KNOWITALL system, which embodies
a novel architecture for domain-independent information extraction
that is based on generic extraction rules to generate candidates, co-
occurrence statistics computed over the web corpus to compute fea-
tures, and a naive Bayes classifier to combine the features and de-
rive a rough estimate of the probability that each fact is correct.
These estimates enable KNOWITALL to trade recall for precision.
The measurements we report aid in understanding the current ca-
pabilities of the system and also serve as a baseline, which future
work will certainly surpass.

We focused our discussion on lessons for the design of large-
scale information extraction systems including:

1. The importance of monitoring the signal-to-noise ratio in ex-
tractions in order to automatically shift focus of attention
from “exhausted” classes (e.g., USSt at e) to productive ones
(e.g., Gi t y) when appropriate (Section 3.1).

2. The tradeoffs between different features for assessing the
probability that extractions are correct including hit counts

versus PMI measures and whether to threshold probability
densities or not (Section 3.2).

3. The efficacy of statistics computed over the web corpus in in-
creasing the precision of extracted information (Section 3.3).

4. The need for recursive query expansion in order to obtain
comprehensive result sets from search engines (Section 3.4).

Most of the research on web search has focused on successive
improvements to the current information retrieval paradigm. This
paper explores the long-term possibility of building a general pur-
pose, automated engine that is based on information extraction and
web-scale statistics. Much work remains to be done, but our pre-
liminary results suggest that this research direction is of interest.
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