
Semi-Supervised Learning Using Randomized Mincuts

Avrim Blum AVRIM @CS.CMU.EDU

John Lafferty LAFFERTY@CS.CMU.EDU

Mugizi Robert Rwebangira RWEBA@CS.CMU.EDU

Rajashekar Reddy RREDDY@CS.CMU.EDU

School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213-3891

Abstract

In many application domains there is a large
amount of unlabeled data but only a very lim-
ited amount of labeled training data. One gen-
eral approach that has been explored for utiliz-
ing this unlabeled data is to construct a graph on
all the data points based on distance relationships
among examples, and then to use the known la-
bels to perform some type of graph partitioning.
One natural partitioning to use is the minimum
cut that agrees with the labeled data (Blum &
Chawla, 2001), which can be thought of as giv-
ing the most probable label assignment if one
views labels as generated according to a Markov
Random Field on the graph. Zhu et al. (2003)
propose a cut based on a relaxation of this field,
and Joachims (2003) gives an algorithm based on
finding an approximate min-ratio cut.

In this paper, we extend the mincut approach
by adding randomness to the graph structure.
The resulting algorithm addresses several short-
comings of the basic mincut approach, and
can be given theoretical justification from both
a Markov random field perspective and from
sample complexity considerations. In cases
where the graph does not have small cuts for a
given classification problem, randomization may
not help. However, our experiments on sev-
eral datasets show that when the structure of
the graph supports small cuts, this can result
in highly accurate classifiers with good accu-
racy/coverage tradeoffs. In addition, we are able
to achieve good performance with a very simple
graph-construction procedure.

Appearing inProceedings of the21 st International Conference
on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

1. Introduction

Learning algorithms often face a shortage of labeled train-
ing data. In many situations we would like a learning algo-
rithm to do well with only a few labeled training examples.
Fortunately, in many cases large numbers ofunlabeledex-
amples are often available. As a result, there has been a
good deal of work in recent years on how unlabeled data
can be usefully employed in order to produce better predic-
tions.

If one believes that “similar examples ought to have similar
labels,” then a natural approach to using unlabeled data is to
combine nearest-neighbor prediction—predict a given test
example based on its nearest labeled example—with some
sort of self-consistency criteria, e.g., that similarunlabeled
examples should, in general, be given the same classifi-
cation. The graph mincut approach of Blum and Chawla
(2001) is a natural way of realizing this intuition in a trans-
ductive learning algorithm. Specifically, the idea of this
algorithm is to build a graph on all the data (labeled and un-
labeled) with edges between examples that are sufficiently
similar, and then to partition the graph into a positive set
and a negative set in a way that (a) agrees with the labeled
data, and (b) cuts as few edges as possible. (An edge is
“cut” if its endpoints are on different sides of the partition.)
Zhu et al. (2003) propose an alternative “soft-partitioning”
method that assigns fractional classifications to the unla-
beled data so as to minimize a quadratic cost function, and
Joachims (2003) gives a method based on spectral parti-
tioning, that produces an approximate minimum ratio cut
in the graph.

The graph mincut approach has a number of attractive
properties. It can be found in polynomial time using net-
work flow; it can be viewed as giving the most probable
configuration of labels in the associated Markov Random
Field (see Section 2); and, it can also be motivated from
sample-complexity considerations, as we discuss further
in Section 4. However, it also suffers from several draw-
backs. First, from a practical perspective, a graph may
have many minimum cuts and the mincut algorithm pro-

duces just one, typically the “leftmost” one using standard
network flow algorithms. For instance, a line ofn vertices
between two labeled pointss andt hasn − 1 cuts of size
1, and the leftmost cut will be especially unbalanced. Sec-
ond, from an MRF perspective, the mincut approach pro-
duces the most probable joint labeling (the MAP hypothe-
sis), but we really would rather label nodes based on their
per-nodeprobabilities (the Bayes-optimal prediction). Fi-
nally, from a sample-complexity perspective, if we could
average over many small cuts, we could improve our con-
fidence via PAC-Bayes style arguments.

In this paper, we propose a simple method for addressing a
number of these drawbacks using randomization. Specif-
ically, we repeatedly add artificial random noise to the
edge weights,1 solve for the minimum cut in the resulting
graphs, and finally output a fractional label for each exam-
ple corresponding to the fraction of the time it was on one
side or the other in this experiment. This is not the same
as sampling directly from the MRF distribution, and is also
not the same as picking truly random minimum cuts in the
original graph, but those problems appear to be much more
difficult computationally on general graphs (see Section 2).

A nice property of the randomized mincut approach is that
it easily leads to a measure of confidence on the predic-
tions; this is lacking in the deterministic mincut algorithm,
which produces a single partition of the data. The confi-
dences allow us to compute accuracy-coverage curves, and
we see that on many datasets the randomized mincut algo-
rithm exhibits good accuracy-coverage performance.

We also discuss design criteria for constructing graphs
likely to be amenable to our algorithm. Note that some
graphs simply do not have small cuts that match any low-
error solution; in such graphs, the mincut approach will
likely fail even with randomization. However, constructing
the graph in a way that is very conservative in producing
edges can alleviate many of these problems. For instance,
we find that a very simple minimum spanning tree graph
does quite well across a range of datasets.

PAC-Bayes sample complexity analysis (McAllester, 2003)
suggests that when the graph has many small cuts consis-
tent with the labeling, randomization should improve gen-
eralization performance. This analysis is supported in ex-
periments with data sets such as handwritten digit recogni-
tion, where the algorithm results in a highly accurate classi-
fier. In cases where the graph does not have small cuts for a
given classification problem, the theory also suggests, and
our experiments confirm, that randomization may not help.
We present experiments on several different data sets that
indicate both the strengths and weaknesses of randomized

1We add noise only to existing edges and do not introduce new
edges in this procedure.

mincuts, and also how this approach compares with the
semi-supervised learning schemes of Zhu et al. (2003) and
Joachims (2003). For the case of MST-graphs, in which the
Markov random field probabilitiescanbe efficiently calcu-
lated exactly, we compare to that method as well.

In the following sections we give some background on
Markov random fields, describe our algorithm more pre-
cisely as well as our design criteria for graph construc-
tion, provide sample-complexity analysis motivating some
of our design decisions, and finally give our experimental
results.

2. Background and Motivation

Markov random field models originated in statistical
physics, and have been extensively used in image process-
ing. In the context of machine learning, what we can do
is create a graph with a node for each example, and with
edges between examples that are similar to each other. A
natural energy function to consider is

E(f) =
1
2

∑

i,j

wij |f(i)−f(j)| = 1
4

∑

i,j

wij(f(i)−f(j))2

wheref(i) ∈ {−1, +1} are binary labels andwij is the
weight on edge(i, j), which is a measure of the similarity
between the examples. To assign a probability distribution
to labelings of the graph, we form a random field

pβ(f) =
1
Z

exp (−βE(f))

where the partition functionZ normalizes over all label-
ings. Solving for the lowest energy configuration in this
Markov random field will produce a partition of the entire
(labeled and unlabeled) dataset that maximally optimizes
self-consistency, subject to the constraint that the configu-
ration must agree with the labeled data.

As noticed over a decade ago in the vision literature (Greig
et al., 1989), this is equivalent to solving for a minimum
cut in the graph, which can be done via a number of stan-
dard algorithms. Blum and Chawla (2001) introduced this
approach to machine learning, carried out experiments on
several data sets, and explored generative models that sup-
port this notion of self-consistency.

The minimum cut corresponds, in essence, to the MAP hy-
pothesis in this MRF model. To produce Bayes-optimal
predictions, however, we would like instead to sample di-
rectly from the MRF distribution. Unfortunately, that prob-
lem appears to be much more difficult computationally on
general graphs. Specifically, while random labelings can
be efficiently sampledbeforeany labels are observed, us-
ing the well-known Jerrum-Sinclair procedure for the Ising
model (Jerrum & Sinclair, 1993), after we observe the la-

bels on some examples, there is no known efficient algo-
rithm for sampling from the conditional probability distri-
bution; see (Dyer et al., 2000) for a discussion of related
combinatorial problems. This leads to two approaches: (1)
try to approximate this procedure by adding random noise
into the graph, or (2) make sure the graph is a tree, for
which the MRF probabilities can be calculated exactly us-
ing dynamic programming. In this paper, we consider both.

3. Randomized Mincuts

The randomized mincut procedure we consider is the fol-
lowing. Given a graphG constructed from the dataset, we
produce a collection of cuts by repeatedly adding random
noise to the edge weights and then solving for the mini-
mum cut in the perturbed graph. In addition, now that we
have a collection of cuts, we remove those that are highly
unbalanced. This step is justified using a simpleε-cover
argument (see Section 4), and in our experiments, any cut
with less than 5% of the vertices on one side is considered
unbalanced.2 Finally, we predict based on a majority vote
over the remaining cuts in our sample, outputting a con-
fidence based on the margin of the vote. We call this al-
gorithm “Randomized mincut with sanity check” since we
use randomization to produce a distribution over cuts, and
then throw out the ones that are obviously far from the true
target function.

In many cases this randomization can overcome some of
the limitations of the plain mincut algorithm. Consider a
graph which simply consists of a line, with a positively la-
beled node at one end and a negatively labeled node at the
other end with the rest being unlabeled. Plain mincut may
choose from any of a number of cuts, and in fact the cut pro-
duced by running network flow will be either the leftmost
or rightmost one depending on how it is implemented. Our
algorithm will take a vote among all the mincuts and thus
we will end up using the middle of the line as a decision
boundary, with confidence that increases linearly out to the
endpoints.

It is interesting to consider for which graphs our algorithm
produces a true uniform distribution over minimum cuts
and for which it does not. To think about this, it is helpful
to imagine we collapse all labeled positive examples into
a single nodes and we collapse all labeled negative exam-
ples into a single nodet. We can now make a few simple
observations. First, a class of graphs for which our algo-
rithm doesproduce a true uniform distribution are those
for which all thes-t minimum cuts are disjoint, such as
the case of the line above. Furthermore, if the graph can

2With only a small set of labeled data, one cannot in general be
confident that the true class probabilities are close to the observed
fractions in the training data, but onecan be confident that they
are not extremely biased one way or the other.

be decomposed into several such graphs running in par-
allel betweens and t (“generalized theta graphs” (Brown
et al., 2001)), then we get a true uniform distribution as
well. That is because any minimums-t cut must look like
a tuple of minimum cuts, one from each graph, and the ran-
domized mincut algorithm will end up choosing at random
from each one.

On the other hand, if the graph has the property that some
minimum cuts overlap with many others and some do not,
then the distribution may not be uniform. For example,
Figure 1 shows a case in which the randomized procedure
gives a much higher weight to one of the cuts than it should
(≥ 1/6 rather than1/n).

3 ... n21

n...321

a

b c

+

+ −

−

Figure 1.In the top graph, each of then cuts of size 2 has proba-
bility 1/n of being minimum when random noise is added to the
edge lengths. However, in the bottom graph this is not the case.
In particular, there is a constant probability that the noise added
to edgec exceeds that added toa andb combined (ifa, b, c are
picked at random from[0, 1] thenPr(c > a + b) = 1/6). This
results in the algorithm producing cut{a, b} no matter what is
added to the other edges. Thus,{a, b} has a much higher than
1/n probability of being produced.

4. Sample complexity analysis

4.1. The basic mincut approach

From a sample-complexity perspective, we have a trans-
ductive learning problem, or (roughly) equivalently, a prob-
lem of learning from a known distribution. Let us model the
learning scenario as one in which first the graphG is con-
structed from data without any labels (as is done in our ex-
periments) and then a few examples at random are labeled.
Our goal is to perform well on the rest of the points. This

means we can view our setting as a standard PAC-learning
problem over the uniform distribution on the vertices of the
graph. We can now think of the mincut algorithm as mo-
tivated by standard Occam bounds: if we describe a hy-
pothesis by listing the edges cut usingO(log n) bits each,
then a cut of sizek can be described inO(k log n) bits.3

This means we need onlyO(k log n) labeled examples to
be confident in a consistent cut ofk edges (ignoring depen-
dence onε andδ).

In fact, we can push this bound further: Kleinberg (2000),
studying the problem of detecting failures in networks,
shows that the VC-dimension of the class of cuts of size
k is O(k). Thus, onlyO(k) labeled examples are needed
to be confident in a consistent cut ofk edges. Kleinberg
et al. (2004) reduce this further toO(k/λ) whereλ is the
size of theglobalminimum cut in the graph (the minimum
number of edges that must be removed in order to separate
the graph into two nonempty pieces, without the require-
ment that the labeled data be partitioned correctly).

One implication of this analysis is that if we imagine data
is being labeled for us one at a time, we can plot the size of
the minimum cut found (which can only increase as we see
more labeled data) and compare it to the global minimum
cut in the graph. If this ratio grows slowly with the number
of labeled examples, then we can be confident in the mincut
predictions.

4.2. Randomized mincut with “sanity check”

As pointed out by Joachims (2003), minimum cuts can at
times be very unbalanced. From a sample-complexity per-
spective we can interpret this as a situation in which the cut
produced is simply not small enough for the above bounds
to apply given the number of labeled examples available.
From this point of view, we can think of our mincut exten-
sion as being motivated by two lines of research on ways of
achieving rules of higher confidence. The first of these are
PAC-Bayes bounds (McAllester, 2003; Langford & Shawe-
Taylor, 2002). The idea here is that even if no single con-
sistent hypothesis is small enough to inspire confidence, if
many of them are “pretty small” (that is, they together have
a large prior if we convert our description language into
a probability distribution) then we can get a better confi-
dence bound by randomizing over them. Even though our
algorithm does not necessarily produce a true uniform dis-
tribution over all consistent minimum cuts, our goal is sim-
ply to produce as wide a distribution as we can to take as
much advantage of this as possible. Results of Freund et al.
(2003) show furthermore that if we weight the rules appro-
priately, then we can expect a lower error rate on examples
for which their vote is highly biased. Again, while our pro-

3This also assumes the graph is connected — otherwise, a hy-
pothesis is not uniquely described by the edges cut.

cedure is at best only an approximation to their weighting
scheme, this motivates our use of the bias of the vote in
producing accuracy/coverage curves.

The second line of research motivating aspects of our al-
gorithm is work on bounds based onε-cover size, e.g.,
(Benedek & Itai, 1991). The idea here is that suppose we
have a known distributionD and we identify some hypoth-
esish that has many similar hypotheses in our class with
respect toD. Then ifh has a high error rate over a labeled
sample, it is likely thatall of these similar hypotheses have
a high true error rate,even if some happen to be consistent
with the labeled sample. In our case, two specific hypothe-
ses we can easily identify of this form are the “all posi-
tive” and “all negative” rules. If our labeled sample is even
reasonably close to balanced — e.g., 3 positive examples
out of 10 — then we can confidently conclude that these
two hypotheses have a high error rate, and throw outall
highly unbalanced cuts, even if they happen to be consis-
tent with the labeled data. For instance, the cut that simply
separates the three positive examples from the rest of the
graph is consistent with the data, but can be ruled out by
this method.

This analysis then motivates the second part of our algo-
rithm in which we discard all highly unbalanced cuts found
before taking majority vote. The important issue here is
that we can confidently do this even if we have only a very
small labeled sample. Of course, it is possible that by do-
ing so, our algorithm is never able to find a cut it is willing
to use. In that case our algorithm halts with failure, con-
cluding that the dataset is not one that is a good fit to the
biases of our algorithm. In that case, perhaps a different
approach such as the methods of Joachims (2003) or Zhu
et al. (2003) or a different graph construction procedure is
needed.

5. Graph design criteria

For a given distance metric, there are a number of ways of
constructing a graph. In this section, we briefly discuss de-
sign principles for producing graphs amenable to the graph
mincut algorithm. These then motivate the graph construc-
tion methods we use in our experiments.

First of all, the graph produced should either be connected
or at least have the property that a small number of con-
nected components cover nearly all the examples. Ift com-
ponents are needed to cover a1 − ε fraction of the points,
then clearly any graph-based method will needt labeled
examples to do well.4

4This is perhaps an obvious criterion but it is important to keep
in mind. For instance, if examples are uniform random points in
the 1-dimensional interval[0, 1], and we connect each point to its
nearestk neighbors, then it is not hard to see that ifk is fixed and

Secondly, for a mincut-based approach we would like a
graph that at least has some small balanced cuts. While
these may or may not correspond to cuts consistent with
the labeled data, we at least do not want to be dead in the
water at the start. This suggests conservative methods that
only produce edges between very similar examples.

Based on these criteria, we chose the following two graph
construction methods for our experiments.

MST: Here we simply construct a minimum spanning tree
on the entire dataset. This graph is connected, sparse,
and furthermore has the appealing property that it has
no free parameters to adjust. In addition, because the
exact MRF per-node probabilitiescanbe exactly cal-
culated on a tree, it allows us to compare our random-
ized mincut method with the exact MRF calculation.

δ-MST: For this method, we connect two points with an
edge if they are within a radiusδ of each other. We
then view the components produced as supernodes
and connect them via an MST. Blum and Chawla
(2001) usedδ such that the largest component had half
the vertices (but did not do the second MST stage). To
produce a more sparse graph, we chooseδ so that the
largest component has1/4 of the vertices.

Another natural method to consider would be ak-NN
graph, say connected up via a minimum spanning tree as
in δ-MST. However, experimentally, we find that on many
of our datasets this produces graphs where the mincut algo-
rithm is simply not able to find even moderately balanced
cuts (so it ends up rejecting them all in its internal “sanity-
check” procedure). Thus, even with a small labeled dataset,
the mincut-based procedure would tell us to choose an al-
ternative graph-creation method.

6. Experimental Analysis

We compare the randomized mincut algorithm on a number
of datasets with the following approaches:

PLAIN MINCUT : Mincut without randomization.

GAUSSIAN FIELDS: The algorithm of Zhu et al. (2003).

SGT: The spectral algorithm of Joachims (2003).

EXACT: The exact Bayes-optimal prediction in the MRF
model, which can be computed efficiently in trees (so we
only run it on the MST graphs).

Below we present results on handwritten digits, portions

the number of points goes to infinity, the number of components
will go to infinity as well. That is because a local configuration,
such as two adjacent tight clumps ofk points each, can cause such
a graph to disconnect.

of the 20 newsgroups text collection, and various UCI
datasets.

6.1. Handwritten Digits

We evaluated randomized mincut on a dataset of handwrit-
ten digits originally from the Cedar Buffalo binary digits
database (Hull, 1994). Each digit is represented by a 16 X
16 grid with pixel values ranging from 0 to 255. Hence,
each image is represented by a 256-dimensional vector.

For each size of the labeled set, we perform 10 trials, ran-
domly sampling the labeled points from the entire dataset.
If any class is not represented in the labeled set, we redo
the sample.

One vs. Two: We consider the problem of classifying dig-
its, “1” vs. “2” with 1128 images. Results are reported
in Figure 2. We find that randomization substantially
helps the mincut procedure when the number of la-
beled examples is small, and that randomized mincut
and the Gaussian field method perform very similarly.
The SGT method does not perform very well on this
dataset for these graph-construction procedures. (This
is perhaps an unfair comparison, because our graph-
construction procedures are based on the needs of the
mincut algorithm, which may be different than the de-
sign criteria one would use for graphs for SGT.)

Odd vs. Even: Here we classify 4000 digits into Odd
vs. Even. Results are given in Figure 3. On the
MST graph, we find that Randomized mincut, Gaus-
sian fields, and the exact MRF calculation all per-
form well (and nearly identically). Again, randomiza-
tion substantially helps the mincut procedure when the
number of labeled examples is small. On theδ-MST
graph, however, the mincut-based procedures perform
substantially worse, and here Gaussian fields and SGT
are the top performers.

In both datasets, the randomized mincut algorithm tracks
the exact MRF Bayes-optimal predictions extremely
closely. Perhaps what is most surprising, however, is how
good performance is on the simple MST graph. On the Odd
vs. Even problem, for instance, Zhu et al. (2003) report for
their graphs an accuracy of 73% at 22 labeled examples,
77% at 32 labeled examples, and do not exceed 80% until
62 labeled examples.

6.2. 20 newsgroups

We performed experiments on classifying text data from
the 20-newsgroup datasets, specifically PC versus MAC
(see Figure 4). Here we find that on the MST graph, all the
methods perform similarly, with SGT edging out the others

2 4 6 8 10 12 14 16 18 20
55

60

65

70

75

80

85

90

95

100

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT
EXACT

2 4 6 8 10 12 14 16 18 20
55

60

65

70

75

80

85

90

95

100

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT

Figure 2.“1” vs “2” on the digits dataset with the MST graph (left) andδ 1
4

graph (right).

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT
EXACT

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT

Figure 3.Odd vs. Even on the digits dataset with the MST graph (left) andδ 1
4

graph (right).

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT
EXACT

20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

Number of Labeled Examples

A
cc

ur
ac

y

Plain Mincut
Randmincut
Gaussian Fields
SGT

Figure 4.PC vs MAC on the 20 newsgroup dataset with MST graph (left) andδ 1
4

graph (right).

on the smaller labeled set sizes. On theδ-MST graph, SGT
performs best across the range of labeled set sizes. On this
dataset, randomization has much less of an effect on the
mincut algorithm.

6.3. UCI Datasets

We conducted experiments on various UC Irvine datasets;
see Table 1. Here we find all the algorithm perform com-
parably.

6.4. Accuracy Coverage Tradeoff

As mentioned earlier, one motivation for adding random-
ness to the mincut procedure is that we can use it to set a
confidence level based on the number of cuts that agree on
the classification of a particular example. To see how con-
fidence affects prediction accuracy, we sorted the examples
by confidence and plotted the cumulative accuracy. Figure
5 shows accuracy-coverage tradeoffs for Odd-vs-Even and
PC-vs-MAC. We see an especially smooth tradeoff for the
digits data, and we observe on both datasets that the algo-
rithm obtains a substantially lower error rate on examples
on which it has high confidence.

6.5. Examining the graphs

To get a feel for why the performance of the algorithms
is so good on the MST graph for the digits dataset, we
examined the following question. Suppose for somei ∈
{0, . . . , 9} you remove all vertices that are not digiti. What
is the size of the largest component in the graph remaining?
This gives a sense of how well one could possibly hope to
do on the MST graph if one had only one labeled example
of each digit. The result is shown in Figure 6. Interestingly,
we see that most digits have a substantial fraction of their
examples in a single component. This partly explains the
good performance of the various algorithms on the MST
graph.

7. Conclusion

We introduce a new semi-supervised learning algorithm
based on adding artificial random noise to the edge weights
of a graph and averaging over the minimum cuts produced.
Our algorithm addresses several shortcomings of the basic
mincut approach, improving performance especially when
the number of labeled examples is small, as well as pro-
viding a confidence score for accuracy-coverage curves.
We provide theoretical motivation for our approach from a
sample complexity and Markov Random Field perspective.

We present experimental results supporting the applicabil-
ity of the randomized mincut algorithm to various settings.
In the experiments done so far, our method allows mincut

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

in
 L

ar
ge

st
 C

om
po

ne
nt

Digit

Figure 6.MST graph for Odd vs. Even: percentage of digiti that
is in the largest component if all other digits were deleted from
the graph.

to approach, though it tends not to beat, the Gaussian field
method of Zhu et al. (2003). However, mincuts have the
nice property that we can apply sample-complexity anal-
ysis, and furthermore the algorithm can often easily tell
when it is or is not appropriate for a dataset based on how
large and how unbalanced the cuts happen to be.

The exact MRF per-node likelihoods can be computed ef-
ficiently on trees. It would be especially interesting if this
can be extended to larger classes of graphs.

Acknowledgements

This work was supported in part by NSF grants CCR-
0105488, NSF-ITR CCR-0122581, and NSF-ITR IIS-
0312814.

References
Benedek, G., & Itai, A. (1991). Learnability with respect to a fixed

distribution.Theoretical Computer Science, 86, 377–389.

Blum, A., & Chawla, S. (2001). Learning from labeled and unla-
beled data using graph mincuts.Proceedings of the 18th Inter-
national Conference on Machine Learning(pp. 19–26). Mor-
gan Kaufmann.

Brown, J. I., Hickman, C. A., Sokal, A. D., & Wagner, D. G.
(2001). Chromatic roots of generalized theta graphs.J. Com-
binatorial Theory, Series B, 83, 272–297.

Dyer, M., Goldberg, L. A., Greenhill, C., & Jerrum, M. (2000).
On the relative complexity of approximate counting problems.
Proceedings of APPROX’00, Lecture Notes in Computer Sci-
ence 1913(pp. 108–119).

Freund, Y., Mansour, Y., & Schapire, R. (2003). Generalization
bounds for averaged classifiers (how to be a Bayesian with-
out believing). To appear in Annals of Statistics. Preliminary

DATASET |L|& |U | FEAT. GRAPH M INCUT RAND MINCUT GAUSSIAN SGT EXACT

MST 92.0 90.9 90.6 90.0 90.6
VOTING 45+390 16 δ 1

4
92.3 91.2 91.0 85.9 —

MST 86.1 89.4 92.2 89.0 92.4
MUSH 20+1000 22 δ 1

4
94.3 94.2 94.2 91.6 —

MST 78.3 77.8 79.2 78.1 83.9
IONO 50+300 34 δ 1

4
78.8 80.0 82.8 79.7 —

MST 63.5 64.0 63.7 61.8 63.9
BUPA 45+300 6 δ 1

4
62.9 62.9 63.5 61.6 —

MST 65.7 67.9 66.7 67.7 67.7
PIMA 50+718 8 δ 1

4
67.9 68.8 67.5 68.2 —

Table 1.Classification accuracies of basic mincut, randomized mincut, Gaussian fields, SGT, and the exact MRF calculation on datasets
from the UCI repository using the MST andδ 1

4
graph. On this data, all the algorithms perform fairly similarly.

0 500 1000 1500 2000 2500 3000 3500 4000
75

80

85

90

95

100

A
cc

ur
ac

y

Examples sorted by confidence

Randmincut on MST

EXACT on MST

Randmincut on δ

0 200 400 600 800 1000 1200 1400 1600 1800 2000
65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Examples sorted by confidence

Randmincut on MST

EXACT on MST

Randmincut on δ

Figure 5.Accuracy coverage tradeoffs for randomized mincut andEXACT. Odd vs. Even (left) and PC vs. MAC (right). Both are at 52
labeled examples. Each curve shown here is for a single run of the algorithm, so the 100% coverage points do not exactly match the
10-run averages of Figures 3 and 4.

version appeared in Proceedings of the 8th International Work-
shop on Artificial Intelligence and Statistics, 2001.

Greig, D., Porteous, B., & Seheult, A. (1989). Exact maximum a
posteriori estimation for binary images.Journal of the Royal
Statistical Society, Series B, 51, 271–279.

Hull, J. (1994). A database for handwritten text recognition re-
search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16, 550–554.

Jerrum, M., & Sinclair, A. (1993). Polynomial-time approxima-
tion algorithms for the Ising model.SIAM Journal on Comput-
ing, 22, 1087–1116.

Joachims, T. (2003). Transductive learning via spectral graph par-
titioning. Proceedings of the International Conference on Ma-
chine Learning (ICML)(pp. 290–297).

Kleinberg, J. (2000). Detecting a network failure.Proc. 41st

IEEE Symposium on Foundations of Computer Science(pp.
231–239).

Kleinberg, J., Sandler, M., & Slivkins, A. (2004). Network fail-
ure detection and graph connectivity.Proc. 15th ACM-SIAM
Symposium on Discrete Algorithms(pp. 76–85).

Langford, J., & Shawe-Taylor, J. (2002). PAC-bayes and margins.
Neural Information Processing Systems.

McAllester, D. (2003). PAC-bayesian stochastic model selection.
Machine Learning, 51, 5–21.

Zhu, X., Gharahmani, Z., & Lafferty, J. (2003). Semi-supervised
learning using Gaussian fields and harmonic functions.Pro-
ceedings of the 20th International Conference on Machine
Learning(pp. 912–919).

