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Abstract

In many application domains there is a large
amount of unlabeled data but only a very lim-
ited amount of labeled training data. One gen-
eral approach that has been explored for utiliz-
ing this unlabeled data is to construct a graph on
all the data points based on distance relationships
among examples, and then to use the known la-
bels to perform some type of graph partitioning.
One natural partitioning to use is the minimum
cut that agrees with the labeled data (Blum &
Chawla, 2001), which can be thought of as giv-
ing the most probable label assignment if one
views labels as generated according to a Markov
Random Field on the graph. Zhu et al. (2003)
propose a cut based on a relaxation of this field,
and Joachims (2003) gives an algorithm based on
finding an approximate min-ratio cut.

In this paper, we extend the mincut approach
by adding randomness to the graph structure.
The resulting algorithm addresses several short-
comings of the basic mincut approach, and
can be given theoretical justification from both

a Markov random field perspective and from

sample complexity considerations. In cases
where the graph does not have small cuts for a
given classification problem, randomization may
not help. However, our experiments on sev-
eral datasets show that when the structure of
the graph supports small cuts, this can result
in highly accurate classifiers with good accu-

racy/coverage tradeoffs. In addition, we are able
to achieve good performance with a very simple
graph-construction procedure.
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1. Introduction

Learning algorithms often face a shortage of labeled train-
ing data. In many situations we would like a learning algo-
rithm to do well with only a few labeled training examples.
Fortunately, in many cases large numbersimfibeledex-
amples are often available. As a result, there has been a
good deal of work in recent years on how unlabeled data
can be usefully employed in order to produce better predic-
tions.

If one believes that “similar examples ought to have similar
labels,” then a natural approach to using unlabeled data is to
combine nearest-neighbor prediction—predict a given test
example based on its nearest labeled example—with some
sort of self-consistency criteria, e.g., that simiatabeled
examples should, in general, be given the same classifi-
cation. The graph mincut approach of Blum and Chawla
(2001) is a natural way of realizing this intuition in a trans-
ductive learning algorithm. Specifically, the idea of this
algorithm is to build a graph on all the data (labeled and un-
labeled) with edges between examples that are sufficiently
similar, and then to partition the graph into a positive set
and a negative set in a way that (a) agrees with the labeled
data, and (b) cuts as few edges as possible. (An edge is
“cut” if its endpoints are on different sides of the partition.)
Zhu et al. (2003) propose an alternative “soft-partitioning”
method that assigns fractional classifications to the unla-
beled data so as to minimize a quadratic cost function, and
Joachims (2003) gives a method based on spectral parti-
tioning, that produces an approximate minimum ratio cut
in the graph.

The graph mincut approach has a number of attractive
properties. It can be found in polynomial time using net-
work flow; it can be viewed as giving the most probable
configuration of labels in the associated Markov Random
Field (see Section 2); and, it can also be motivated from
sample-complexity considerations, as we discuss further
in Section 4. However, it also suffers from several draw-
First, from a practical perspective, a graph may
have many minimum cuts and the mincut algorithm pro-



duces just one, typically the “leftmost” one using standardmincuts, and also how this approach compares with the
network flow algorithms. For instance, a lineiofvertices  semi-supervised learning schemes of Zhu et al. (2003) and
between two labeled pointsandt¢ hasn — 1 cuts of size  Joachims (2003). For the case of MST-graphs, in which the
1, and the leftmost cut will be especially unbalanced. SecMarkov random field probabilitiesanbe efficiently calcu-
ond, from an MRF perspective, the mincut approach prodated exactly, we compare to that method as well.

duces the most probable joint labeling (the MAP hypothe-

sis), but we really would rather label nodes based on thei . . )
o . o .~ 'Markov random fields, describe our algorithm more pre-
per-nodeprobabilities (the Bayes-optimal prediction). Fi- . ; L
cisely as well as our design criteria for graph construc-

nally, from a sample-complexity perspective, if we could ; . . ; -
. tion, provide sample-complexity analysis motivating some
average over many small cuts, we could improve our con-

fidence via PAC-Bayes style arguments. :J;‘Soutftrsde&gn decisions, and finally give our experimental

In this paper, we propose a simple method for addressing a

pumber of these drawbacks using randomlzat|9n. SpeC|f2_ Background and Motivation

ically, we repeatedly add artificial random noise to the

edge weights, solve for the minimum cut in the resulting Markov random field models originated in statistical
graphs, and finally output a fractional label for each examphysics, and have been extensively used in image process-
ple corresponding to the fraction of the time it was on oneing. In the context of machine learning, what we can do
side or the other in this experiment. This is not the samds create a graph with a node for each example, and with
as sampling directly from the MRF distribution, and is alsoedges between examples that are similar to each other. A
not the same as picking truly random minimum cuts in thenatural energy function to consider is

original graph, but those problems appear to be much more 1 1

difficult computationally on general graphs (see Section 2) F( f) = 5 Z wi () =) = 1 Z wi; (@) — ()

A nice property of the randomized mincut approach is that ~ b

it easily leads to a measure of confidence on the predicwheref(z') € {—1,+1} are binary labels and;; is the
tior)s; this is lacking .in the detgrministic mincut algorithm,. weight on edgéi, j), which is a measure of the similarity
which produces a single partition of the data. The confi-yetween the examples. To assign a probability distribution

dences allow us to compute accuracy-coverage curves, aRg |apelings of the graph, we form a random field
we see that on many datasets the randomized mincut algo-

. . . _ 1
rithm exhibits good accuracy-coverage performance. ps(f) = = exp (—BE(f))

We also discuss design criteria for constructing graphs 4

likely to be amenable to our algorithm. Note that somewhere the partition functiorZ normalizes over all label-
graphs simply do not have small cuts that match any lowings. Solving for the lowest energy configuration in this
error solution; in such graphs, the mincut approach willMarkov random field will produce a partition of the entire
likely fail even with randomization. However, constructing (labeled and unlabeled) dataset that maximally optimizes
the graph in a way that is very conservative in producingself-consistency, subject to the constraint that the configu-
edges can alleviate many of these problems. For instancéation must agree with the labeled data.

we find that a very simple minimum spanning tree graphag noticed over a decade ago in the vision literature (Greig
does quite well across a range of datasets. et al., 1989), this is equivalent to solving for a minimum
PAC-Bayes sample complexity analysis (McAllester, 2003)cut in the graph, which can be done via a number of stan-
suggests that when the graph has many small cuts consigard algorithms. Blum and Chawla (2001) introduced this
tent with the labeling, randomization should improve gen-approach to machine learning, carried out experiments on
eralization performance. This analysis is supported in exseveral data sets, and explored generative models that sup-
periments with data sets such as handwritten digit recogniPort this notion of self-consistency.

tion, where the algorithm results in a highly accurate classirha minimum cut corresponds, in essence, to the MAP hy-

fier. In cases where the graph does not have small cuts forﬁothesis in this MRF model. To produce Bayes-optimal
given classification problem, the theory also suggests, anﬂredictions, however, we would like instead to sample di-

our experiments confirm, that randomization may not helpy .y from the MRF distribution. Unfortunately, that prob-
We present experiments on several different data sets th m appears to be much more difficult computationally on

indicate both the strengths and weaknesses of randomiz%%nerm graphs. Specifically, while random labelings can

We add noise only to existing edges and do not introduce neV\!Pe efficiently sampledbeforegny |§be|5 are observed, us-
edges in this procedure. ing the well-known Jerrum-Sinclair procedure for the Ising

model (Jerrum & Sinclair, 1993), after we observe the la-

In the following sections we give some background on



bels on some examples, there is no known efficient algobe decomposed into several such graphs running in par-
rithm for sampling from the conditional probability distri- allel betweens and¢ (“generalized theta graphs” (Brown
bution; see (Dyer et al., 2000) for a discussion of relatecket al., 2001)), then we get a true uniform distribution as
combinatorial problems. This leads to two approaches: (1jvell. That is because any minimugrt cut must look like

try to approximate this procedure by adding random noise tuple of minimum cuts, one from each graph, and the ran-
into the graph, or (2) make sure the graph is a tree, fodomized mincut algorithm will end up choosing at random
which the MRF probabilities can be calculated exactly us-from each one.

ing dynamic programming. In this paper, we consider both'On the other hand, if the graph has the property that some

_ _ minimum cuts overlap with many others and some do not,
3. Randomized Mincuts then the distribution may not be uniform. For example,

The randomized mincut procedure we consider is the foI—FIgure 1 shows a case in which the randomized procedure

lowing. Given a grapltz constructed from the dataset, we gQ/es a mL;]Ch hrllgher weight to one of the cuts than it should
produce a collection of cuts by repeatedly adding randon$* 1/6 rather thani /n).

noise to the edge weights and then solving for the mini-

mum cut in the perturbed graph. In addition, now that we

have a collection of cuts, we remove those that are highly 1 2 ‘3 n
unbalanced. This step is justified using a simpleover : : ;
argument (see Section 4), and in our experiments, any cut
with less than 5% of the vertices on one side is considere
unbalanced. Finally, we predict based on a majority vote
over the remaining cuts in our sample, outputting a con-
fidence based on the margin of the vote. We call this al-
gorithm “Randomized mincut with sanity check” since we

use randomization to produce a distribution over cuts, and
then throw out the ones that are obviously far from the true 1
target function.

D)

C

In many cases this randomization can overcome some o
the limitations of the plain mincut algorithm. Consider a a
graph which simply consists of a line, with a positively la-
beled node at one end and a negatively labeled node at the
other end with the rest being unlabeled. Plain mincut may
choose from any of a number of cuts, and in fact the cut pro-

duced by running network flow will be either the leftmost iy, re 1in the top graph, each of thecuts of size 2 has proba-

or rightmost one depending on how it is implemented. Outyjjity 1 /1, of being minimum when random noise is added to the

algorithm will take a vote among all the mincuts and thusedge lengths. However, in the bottom graph this is not the case.

we will end up using the middle of the line as a decisionin particular, there is a constant probability that the noise added

boundary, with confidence that increases linearly out to théo edgec exceeds that added toandb combined (ifa, b, c are

endpoints. picked at random fronf0, 1] thenPr(c > a + b) = 1/6). This
results in the algorithm producing c{it, b} no matter what is

It is interesting to consider for which graphs our algorithm zqded to the other edges. Thys, b} has a much higher than
produces a true uniform distribution over minimum cuts 1 /» probability of being produced.

and for which it does not. To think about this, it is helpful

to imagine we collapse all labeled positive examples into

a single node and we collapse all labeled negative exam-4 . Sample complexity analysis
ples into a single node We can now make a few simple

observations. First, a class of graphs for which our algo#4-1. The basic mincut approach

rithm doesproduce a true uniform distribution are those From a sample-complexity perspective, we have a trans-
for which all the;—t minimum cuts are d|SJ_0|nt, such as ductive learning problem, or (roughly) equivalently, a prob-
the case of the line above. Furthermore, if the graph cafym of learning from a known distribution. Let us model the

2With only a small set of labeled data, one cannot in general bd€arning scenario as one in which first th‘? gr@l’rs.con-
confident that the true class probabilities are close to the observestructed from data without any labels (as is done in our ex-
fractions in the training data, but oman be confident that they periments) and then a few examples at random are labeled.
are not extremely biased one way or the other. Our goal is to perform well on the rest of the points. This



means we can view our setting as a standard PAC-learningedure is at best only an approximation to their weighting
problem over the uniform distribution on the vertices of thescheme, this motivates our use of the bias of the vote in
graph. We can now think of the mincut algorithm as mo-producing accuracy/coverage curves.

tivated by standard Occam bounds: if we describe a hy-

pothesis by listing the edges cut usifglog n) bits each TheT secgnd line of research motivating aspegts of our al-
then a cut of sizé: can be described i0(klogn) bits3 gorithm is work on bounds based arcover size, e.g,

This means we need onl (k log n) labeled examples to (Benedek & Itai, 1991). The idea here is that suppose we

be confident in a consistent cut/okdges (ignoring depen- haye a known d|str|but|p@ and we |dent|fy.some hypoth—.
esish that has many similar hypotheses in our class with
dence ore and9).

respect taD. Then if h has a high error rate over a labeled
In fact, we can push this bound further: Kleinberg (2000),sample, it is likely thagll of these similar hypotheses have
studying the problem of detecting failures in networks,a high true error rategven if some happen to be consistent
shows that the VC-dimension of the class of cuts of sizewith the labeled sampldn our case, two specific hypothe-
kis O(k). Thus, onlyO(k) labeled examples are needed ses we can easily identify of this form are the “all posi-
to be confident in a consistent cut bfedges. Kleinberg tive” and “all negative” rules. If our labeled sample is even
et al. (2004) reduce this further to(k/)\) where) is the  reasonably close to balanced — e.g., 3 positive examples
size of theglobal minimum cut in the graph (the minimum out of 10 — then we can confidently conclude that these
number of edges that must be removed in order to separate/o hypotheses have a high error rate, and throwatiut
the graph into two nonempty pieces, without the require-highly unbalanced cuisven if they happen to be consis-
ment that the labeled data be partitioned correctly). tent with the labeled data. For instance, the cut that simply

One implication of this analysis is that if we imagine dataseparates the three positive examples from the rest of the
P Y 9 raph is consistent with the data, but can be ruled out by

is being labeled for us one at a time, we can plot the size of,_.

2 : . his method.
the minimum cut found (which can only increase as we see
more labeled data) and compare it to the global minimuniThis analysis then motivates the second part of our algo-
cut in the graph. If this ratio grows slowly with the number rithm in which we discard all highly unbalanced cuts found
of labeled examples, then we can be confident in the mincutefore taking majority vote. The important issue here is

predictions. that we can confidently do this even if we have only a very
small labeled sample. Of course, it is possible that by do-
4.2. Randomized mincut with “sanity check” ing so, our algorithm is never able to find a cut it is willing

) ) o to use. In that case our algorithm halts with failure, con-
As pointed out by Joachims (2003), minimum cuts can at,ding that the dataset is not one that is a good fit to the

times be very unbalanced. From a sample-complexity pefpiages of our algorithm. In that case, perhaps a different
spective we can interpret this as a situation in which the C“&pproaoh such as the methods of Joachims (2003) or Zhu

produced is simply not small enough for the above boundgy 5 (2003) or a different graph construction procedure is
to apply given the number of labeled examples availablegeaqeq.

From this point of view, we can think of our mincut exten-
sion as being motivated by two lines of research on ways of . L
achieving rules of higher confidence. The first of these are- Graph design criteria

PAC-Bayes bounds (McAllester, 2003; Langford & Shawe-gq, 5 given distance metric, there are a number of ways of

Taylor, 2002). The idea here is that even if no single con<,nstrcting a graph. In this section, we briefly discuss de-

sistent hypothesisﬂis small enciugh to_ inspire confidence, 'gign principles for producing graphs amenable to the graph
many of them are “pretty small” (that is, they together havey,in et aigorithm. These then motivate the graph construc-
a large p.rl'or |f. Wg cqnvert our description language 'ntf)tion methods we use in our experiments.

a probability distribution) then we can get a better confi-

dence bound by randomizing over them. Even though ouFirst of all, the graph produced should either be connected
algorithm does not necessarily produce a true uniform disor at least have the property that a small number of con-
tribution over all consistent minimum cuts, our goal is sim- nected components cover nearly all the examplescdmn-

ply to produce as wide a distribution as we can to take aponents are needed to covet & ¢ fraction of the points,
much advantage of this as possible. Results of Freund et dhen clearly any graph-based method will neeldbeled
(2003) show furthermore that if we weight the rules appro-€xamples to do wefl,

prlatel_y, thenlwe Can e).(pect a. lower erro.r rate pn examplesWisperhaps an obvious criterion but it is important to keep
for which their vote is highly biased. Again, while our pro- j, mind. For instance, if examples are uniform random points in

the 1-dimensional intervdd, 1], and we connect each point to its

This also assumes the graph is connected — otherwise, a h¥1'earesk neighbors, then it is not hard to see that if fixed and

pothesis is not uniquely described by the edges cut.



Secondly, for a mincut-based approach we would like aof the 20 newsgroups text collection, and various UCI
graph that at least has some small balanced cuts. Whildatasets.

these may or may not correspond to cuts consistent with

the labeled data, we at least do not want to be dead in the.1. Handwritten Digits

water at the start. This suggests conservative methods that , , )
only produce edges between very similar examples. We evaluated randomized mincut on a dataset of handwrit-

ten digits originally from the Cedar Buffalo binary digits
Based on these criteria, we chose the following two graptjatabase (Hull, 1994). Each digit is represented by a 16 X
construction methods for our experiments. 16 grid with pixel values ranging from 0 to 255. Hence,

each image is represented by a 256-dimensional vector.

MST: Here we simply construct a minimum spanning tré€gq, oach size of the labeled set, we perform 10 trials, ran-

on the entire dataset. This graph is connected, SparsBomly sampling the labeled points from the entire dataset.

and furthermore has the appealing property that it hag; 5y class is not represented in the labeled set, we redo
no free parameters to adjust. In addition, because thg,, sample

exact MRF per-node probabilitiesmn be exactly cal-

culated on a tree, it allows us to compare our random- _ o )
ized mincut method with the exact MRF calculation. ©One Vs. Two: We consider the problem of classifying dig-
its, “1” vs. “2” with 1128 images. Results are reported

§-MST: For this method, we connect two points with an in Figure 2. We find that randomization substantially
edge if they are within a radius of each other. We helps the mincut procedure when the number of la-
then view the components produced as supernodes beled examples is small, and that randomized mincut
and connect them via an MST. Blum and Chawla and the Gaussian field method perform very similarly.
(2001) used such that the largest component had half The SGT method does not perform very well on this
the vertices (but did not do the second MST stage). To  dataset for these graph-construction procedures. (This
produce a more sparse graph, we chabse that the is perhaps an unfair comparison, because our graph-
largest component hdg4 of the vertices. construction procedures are based on the needs of the

mincut algorithm, which may be different than the de-

Another natural method to consider would beka\N sign criteria one would use for graphs for SGT.)

graph, say connected up via a minimum spanning tree 3844
in 0-MST. However, experimentally, we find that on many

of our datasets this produces graphs where the mincut algo-
rithm is simply not able to find even moderately balanced
cuts (so it ends up rejecting them all in its internal “sanity-
check” procedure). Thus, even with a small labeled dataset,
the mincut-based procedure would tell us to choose an al-
ternative graph-creation method.

vs. Even: Here we classify 4000 digits into Odd
vs. Even. Results are given in Figure 3. On the
MST graph, we find that Randomized mincut, Gaus-
sian fields, and the exact MRF calculation all per-
form well (and nearly identically). Again, randomiza-
tion substantially helps the mincut procedure when the
number of labeled examples is small. On th¥ST
graph, however, the mincut-based procedures perform
substantially worse, and here Gaussian fields and SGT
6. Experimental Analysis are the top performers.

We compare the randomized mincut algorithm on a number
of datasets with the following approaches: In both datasets, the randomized mincut algorithm tracks

the exact MRF Bayes-optimal predictions extremely
closely. Perhaps what is most surprising, however, is how
GAUSSIAN FIELDS: The algorithm of Zhu et al. (2003).  good performance is on the simple MST graph. On the Odd
) ) vs. Even problem, for instance, Zhu et al. (2003) report for
SGT. The spectral algorithm of Joachims (2003). their graphs an accuracy of 73% at 22 labeled examples,
EXACT: The exact Bayes_optima| prediction in the MRE 77% at 32 labeled examples, and do not exceed 80% until

model, which can be computed efficiently in trees (so web2 labeled examples.
only run it on the MST graphs).

PLAIN MINCUT : Mincut without randomization.

. .- . 6.2. 20 newsgroups
Below we present results on handwritten digits, portions group

r—— . We performed experiments on classifying text data from
the number of points goes to infinity, the number of Cqrm)or?em?the 20-newsgroup datasets, specifically PC versus MAC
will go to infinity as well. That is because a local configuration, group » SP y

such as two adjacent tight clumpsfopoints each, can cause such (See Figure 4). Here we find that on the MST graph, all the
a graph to disconnect. methods perform similarly, with SGT edging out the others
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on the smaller labeled set sizes. OndH&ST graph, SGT

performs best across the range of labeled set sizes. On this
dataset, randomization has much less of an effect on the sl
mincut algorithm.

©
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70

6.3. UCI Datasets 6o

50
We conducted experiments on various UC Irvine datasets;
see Table 1. Here we find all the algorithm perform com-
parably.

40

30+

Percentage in Largest Component

20

6.4. Accuracy Coverage Tradeoff 1o}

As mentioned earlier, one motivation for adding random- T T 2 s 4

ness to the mincut procedure is that we can use it to set a

confidence level based on the number of cuts that agree %Bgure 6MST graph for Odd vs. Even: percentage of digibat

the classification of a particular example. To see how coNgg i the largest component if all other digits were deleted from

fidence affects prediction accuracy, we sorted the examplege graph.

by confidence and plotted the cumulative accuracy. Figure

5 shows accuracy-coverage tradeoffs for Odd-vs-Even and

PC-vs-MAC. We see an especially smooth tradeoff for the, »,0r0ach, though it tends not to beat, the Gaussian field

digits data, and we observe on both datasets that the alg@;athod of Zhu et al. (2003). However, mincuts have the

rithm tha_lins a s_ubstanti_ally lower error rate on exampleg,i.q property that we can apply sample-complexity anal-

on which it has high confidence. ysis, and furthermore the algorithm can often easily tell
o when it is or is not appropriate for a dataset based on how

6.5. Examining the graphs large and how unbalanced the cuts happen to be.

To get a feel for why the performance of the algorithmsThe exact MRF per-node likelihoods can be computed ef-
is so good on the MST graph for the digits dataset, Weficiently on trees. It would be especially interesting if this

examined the following question. Suppose for same can be extended to |arger classes of graphs_
{0,...,9} you remove all vertices that are not digitWWwhat

is the size of the largest component in the graph remai”ingf&cknowledgements

This gives a sense of how well one could possibly hope to

do on the MST graph if one had only one labeled exampleThis work was supported in part by NSF grants CCR-
of each digit. The result is shown in Figure 6. Interestingly,0105488, NSF-ITR CCR-0122581, and NSF-ITR IIS-
we see that most digits have a substantial fraction of theip312814.

examples in a single component. This partly explains the

good performance of the various algorithms on the MSTReferences

graph.
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DATASET | |L|&|U| | FEAT. | GRAPH || MINCUT | RAND MINCUT | GAUSSIAN | SGT | EXACT
MST 92.0 90.9 90.6 90.0 90.6
VOTING 45+390 16 6% 92.3 91.2 91.0 85.9 —
MST 86.1 89.4 92.2 89.0 92.4
MUSH 20+1000 22 6% 94.3 94.2 94.2 91.6 —
MST 78.3 77.8 79.2 78.1 83.9
fo] e} 50+300 34 5% 78.8 80.0 82.8 79.7 —
MST 63.5 64.0 63.7 61.8| 63.9
BuPA 45+300 6 6% 62.9 62.9 63.5 61.6 —
MST 65.7 67.9 66.7 67.7 67.7
PiMA 50+718 8 5% 67.9 68.8 67.5 68.2 —

Table 1.Classification accuracies of basic mincut, randomized mincut, Gaussian fields, SGT, and the exact MRF calculation on datasets
from the UCI repository using the MST arﬁ% graph. On this data, all the algorithms perform fairly similarly.

100 T T 100

EXACT on MST

Randmincut on MST
95 il

g5 Randmincut on MST

90 q

©
S
@
&
T
L

Accuracy
Accuracy

@
)
@
3
T
L

Randmincut on &

751 Randmincut on &

80
701

75 L L L L L L L 65 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Examples sorted by confidence Examples sorted by confidence

Figure 5.Accuracy coverage tradeoffs for randomized mincut ardcT. Odd vs. Even (left) and PC vs. MAC (right). Both are at 52
labeled examples. Each curve shown here is for a single run of the algorithm, so the 100% coverage points do not exactly match the
10-run averages of Figures 3 and 4.
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