
Bumping Strategies for the Multiagent Agreement Problem

Pragnesh Jay Modi and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213

{pmodi,mmv}@cs.cmu.edu

Abstract

We introduce the Multiagent Agreement Problem (MAP)
to represent a class of multiagent scheduling problems.
MAP is based on the Distributed Constraint Reasoning
(DCR) paradigm and requires agents to choose values for
variables to satisfy not only their own constraints, but also
equality constraints with other agents. The goal is to rep-
resent problems in which agents must agree on scheduling
decisions, for example, to agree on the start time of a meet-
ing. We investigate a challenging class of MAP – private,
incremental MAP (piMAP) in which agents do incremen-
tal scheduling of activities and there exist privacy restric-
tions on information exchange. We investigate a range of
strategies for piMAP, called “bumping” strategies. We em-
pirically evaluate these strategies in the domain of calendar
management where a personal assistant agent must sched-
ule meetings on behalf of its human user. Our results show
that bumping decisions based on scheduling difficulty mod-
els of other agents can significantly improve performance
over simpler bumping strategies.

1. Introduction

Distributed Constraint Reasoning (DCR)
[2, 11, 12, 18, 20] has been proposed as a theoreti-
cal foundation for problems in multiagent systems, for ex-
ample, distributed scheduling problems. In DCR, a set of
variables are distributed among a set of agents and con-
straints among variables require agents to coordinate
their value choices. This paper considers the DCR ap-
proach for problems where an agent must schedule activi-
ties under the following three conditions:

• Schedules are inter-dependent with other agents. A
schedule isvalid if it satisfies both local constraints
and also equality constraints with other agents. For ex-
ample in meeting scheduling, a person has local con-
straints such as they can only attend one meeting at

a time, but all attendees must agree on the time of
a meeting, which is an equality constraint among the
schedules of different agents.

• Schedules are built incrementally. That is, new activi-
ties must be incorporated into an existing valid sched-
ule to produce a new valid schedule. A key feature of
incremental scheduling is that existing activities often
need to be moved, or ”bumped” and rescheduled, in or-
der to successfully accommodate the new activities.

• Schedules contain private information and each agent
retains ownership of its schedule. We assume this as
an explicit property of the application domain. This
property eliminates a solution approach in which all
information is communicated to a central scheduler
that constructs a global schedule for all agents. In-
stead, each agent makes its own scheduling decisions
and communicates with others to ensure a valid sched-
ule. Importantly, the assumption of private information
places limits on the information that is exchanged.

We argue that the above are key essential features of
many real-world distributed scheduling problems. Incre-
mental scheduling is clearly an important class of problem.
Inter-dependencies as defined by equality constraints arise
whenever multiple agents must schedule a joint activity that
must be executed at the same time, e.g., scheduling a coor-
dinated invasion in military mission planning. Finally, pri-
vacy restrictions are ubiquitous when agents are used to rep-
resent the interests of humans.

There is currently a mismatch between existing ap-
proaches to DCR and what is needed to solve scheduling
problems with the above features. First, existing DCR rep-
resentations such as DisCSP [20] and DCOP [12], which
make few assumptions about constraints, are overly gen-
eral for some domains. Algorithms designed for these rep-
resentations fail to exploit additional assumptions that
may be available. For example, if only equality con-
straints are needed to encode the underlying problem,
it makes sense to limit the representation and design a

more specialized (and potentially more efficient) algo-
rithm. Currently, such specialized representations are lack-
ing.

Second, existing work in DCR has not explicitly consid-
ered incremental problem solving and rescheduling (bump-
ing) as a key algorithmic decision point. Instead, most ex-
isting approaches, with the exception of the Open CSP ap-
proach of Faltings and Gonzalez[7], have focused on batch
problem solving. A batch approach is potentially inefficient
in an incremental setting because it fails to take advantage
of the given partial solution.

Finally, previous research in classical scheduling has
shown that using heuristics can significantly aid in prob-
lem solving [1], but most existing methods in DCR, e.g.,
DBO[20], AWC[20], Adopt[12], use uninformed search.
Effective search heuristics for DCR have the potential to
improve performance. For example, general high-level in-
formation about other agents, such as the number of vari-
ables they own, could be incorporated as a heuristic. The
most progress to date on this idea is the texture measures
approach of Sycara et. al. [19], discussed further in Sec-
tion 5.

This paper presents a DCR approach to the multiagent
scheduling problem and the issues described above. First,
to address the issue of lack of specialized representations
and lack of focus on incremental problem solving, we intro-
duce the private, incremental Multiagent Agreement Prob-
lem (piMAP) as a special class of DCR in which constraints
between agents are limited to equality constraints. Agents
assign values to variables in an incremental manner with
restrictions on to whom certain information may be com-
municated. Specifically, piMAP defines a set of participants
for each variable and explicitly prohibits the communica-
tion of information about variables between agents who are
not participants in the variable.

Second, in order to address the issue of lack of use of
heuristics in DCR, we investigate a range of heuristic strate-
gies for the “bumping” problem in piMAP. The bumping
problem is deciding how to rearrange the existing schedule
in order to schedule a new activity. We introduce a heuris-
tic in which the main idea is to represent and exploit gen-
eral knowledge about other agents (while adhering to pri-
vacy constraints) and their “scheduling difficulty”. Our no-
tion of scheduling difficulty is sufficiently general to model
a wide range of contributing factors. The specific schedul-
ing difficulty model we investigate in this paper assumes an
agent has or can obtain knowledge of the average sched-
ule density of other agents.

Finally, we use piMAP to model the multiagent meet-
ing scheduling problem and investigate the performance of
our bumping strategies in this domain. Multiagent meet-
ing scheduling has been investigated before [9, 17, 8] but
our work is distinctive in its focus on bumping techniques

for rescheduling in an incremental setting. Existing work
has not investigated this aspect of the multiagent meeting
scheduling problem. We evaluate our approach in an exper-
imental testbed for multiagent meeting scheduling where
personal assistant agents schedule meetings on behalf of
their human users. We simulate a human organization where
higher ranked people have very busy calendars and lower
ranked people have lower calendar density. Our results
show a significant reduction in scheduling failure rate with
a bumping strategy that uses a model of scheduling diffi-
culty against other strategies that do not.

2. Problem Definition: piMAP

A Distributed Constraint Reasoning (DCR) is defined by
a set of agents, variables, values and constraints, where each
variable is assigned to an agent who has control of its value.
Constraints which are local, i.e., among variables assigned
to the same agent, are calledintra-agentconstraints, while
constraints which are external, i.e., among variables as-
signed to different agents, are calledinter-agentconstraints.
DCR can be viewed as a distributed form of the well-known
and very successful CSP representation from AI [4].

We use the general DCR framework to define themulti-
agent agreement problem(MAP). In MAP, a set of agents
must map elements from one set, which are modeled as the
variables, to elements of a second set, which are modeled as
the values. Importantly, inter-agent constraints requiremul-
tiple agents to agree on the assignment of a value to a shared
variable.

2.1. Formal Definitions

We define themultiagent agreement problem(MAP) as
follows:

• A = {A1, A2, ..., An} is a set ofagents.

• V = {V1, V2, ..., Vm} is a set ofvariables.

• D = {d1, d2, ..., dk} is a set ofvalues. Each value can
be assigned to any variable.

• participants(Vi) ⊆ A is the set of agents assigned the
variableVi. A variable assigned to an agent means it
has (possibly shared) responsibility for choosing its
value.

• vars(Ai) ⊆ V is the set of variables assigned to agent
Ai.

• For each agentAi, Ci is anintra-agentconstraint that
evaluates to true or false. It must be definedonly over
the variables invars(Ai).

• For each variableVi, an inter-agent“agreement” con-
straint is satisfied if and only if the same value fromD
is assigned toVi by all the agents inparticipants(Vi).

We say an assignment of values to variables isvalid
(sound)if it satisfies both inter-agent and intra-agent con-
straints. We say an assignment iscompleteif every variable
in V is assigned some value. The goal is to find a valid and
complete assignment.

MAP is a special class of DisCSP as proposed by Yokoo
and others [20]. The major difference is that MAP allows
a variable to be shared among a set of agents (participants)
while DisCSP assigns each variable to a unique agent. How-
ever, MAP can be viewed as a DisCSP by giving a copy of
each shared MAP variable to each participant and adding
inter-agent equality constraints between the copies. Any
DisCSP cannot be converted to a MAP because DisCSP
admits general inter-agent constraints, but MAP inter-agent
constraints are limited to the equality constraints on shared
variables.

A motivation for introducing the MAP representation
with shared variables is to conveniently and explicitly cap-
ture problems where multiple agents are involved in a joint
decision. This is a feature of many distributed domains
where each agent brings its own private constraints to bear
on the decision, but yet agents must come to an agreement.
Another important motivation is to develop more special-
ized DCR algorithms and approaches that are tailored to
this particular problem rather than exclusive focus on us-
ing the most general DCR representation and algorithms.

Also, MAP assumes a single set of valuesD, i.e, all vari-
ables have the same domain, but this is not a restriction.
Given a set of variables with different domains, we can de-
fine a new universal domain as the union of the individual
domains and add unary constraints to each variable to elim-
inate infeasible values.

Private, Incremental MAP(piMAP) is an extension to
MAP in which agents must solve MAP in an incremental
fashion while limiting the information they can exchange:

• Incremental: In incremental MAP, new variables and
associated constraints are added to the problem over
time and must be integrated into an existing assign-
ment. In meeting scheduling for example, new meet-
ings arise over time and must be scheduled in the con-
text of an existing schedule. Given a MAP with agents
A and variablesV , an incremental MAP also includes:

– Sinit = {(V1, d1), (V2, d2), ..., (Vm, dm)} is an
initial assignment of values to variables inV .

– V ′ = V ∪ {Vm+1} is a set of variables to be as-
signed a value.

– participants(Vm+1) is a set of agents who are as-
signed the variableVm+1.

– A′ = A ∪ participants(Vm+1) is a set of agents.

The goal is find a valid and complete assignment
for the variables inV ′. This incremental aspect of the

problem raises the need for the bumping strategies de-
scribed in this paper. Given a final solutionSfinal, we
say a variableVi ∈ V with initial value(Vi, di) ∈ Sinit

was bumpedif (Vi, di) 6∈ Sfinal. That is,Vi is as-
signed a final value different from its initial value or
in the case of an incomplete solution, unassigned a fi-
nal value. The total number of bumped variables mea-
sures the amount of schedule disruption that is needed
to schedule the new variable. All other things equal, an
algorithm that is able to obtain a solution with fewer
bumps is more desirable than one that requires greater
bumps.

• Privacy: The information that may be exchanged
among agents is limited due to a desire to main-
tain distribution and privacy. In particular, we assume
the following condition.

– Ai ∈ participants(Vj) does not communicate in-
formation aboutVj to any agent who is not in
participants(Vj)

For example, a variable’s current value or the partic-
ipants of a variable are not communicated to any agent
who is not a participant in the variable.

Finding a solution to MAP under this condition is
challenging in part because the indirect constraints that
arise through chains of constraints often cross privacy
boundries and so cannot be made easily visible to any
single agent.

2.2. Meeting Scheduling as piMAP

Multiagent meeting scheduling requires a set of
agentsA = {A1, A2, ..., An} to pair a set of meet-
ings M = {M1, M2, ..., Mm} with a set of timeslots
T = {T1, T2, ..., Tp} according to a set of constraints. For
simplicity, we assume each meeting has the same dura-
tion d, andT is a set of discrete non-overlapping timeslots
of length d. A valid solution must satisfy three con-
straints: a) each meeting is assigned to exactly one timeslot,
b) no attendee is required to attend more than one meet-
ing at the same time, and c) all the attendees of a given
meeting agree on its assigned timeslot. We represent this
problem using piMAP as follows.

We define a piMAP variableVi for each meetingMi, and
an piMAP valuedj for each timeslotTj. Theparticipants
of variableVi correspond to the attendees of meetingMi.
The piMAP inter-agent agreement constraint ensures that
meeting attendees agree on the start time of the meeting.
The piMAP intra-agent constraintCi is satisfied if and only
if no value fromT is assigned to more than one variable
in vars(Ai), i.e., no timeslot is double-booked in an agents
schedule. Although beyond the scope of this paper,Ci could
also be used to represent time-of-day preferences (e.g., “no

1M

2M

!=

2M

!=
3M

1M

3M

3M

A1 A2

A3 A4

A5
=

=

=

=
=

Figure 1. Meeting Scheduling as the Multia-
gent Agreement Problem.

meetings before 11am”) or more complex local constraints
such as travel time between meetings or back-to-back pref-
erences [15].

Figure 1 illustrates the multiagent agreement prob-
lem with five agents A1, A2, A3,A4,A5 and three
meetings M1,M2,M3. Participants are defined as
participants(M1) = {A1, A3}, participants(M2) =
{A1, A2}, participants(M3) = {A2 , A4, A5}. Vari-
ables within an agent must have different values corre-
sponding to different start times, while the variables cor-
responding to the same meeting must be assigned the
same value to satisfy the inter-agent agreement con-
straint.

3. Solutions for piMAP

We describe a protocol for piMAP that guarantees a valid
assignment. The protocol does not guarantee a complete as-
signment because additional complexity would be neces-
sary. Instead of focusing on complexity of the protocol, our
main purpose is to use this protocol to support investiga-
tion of bumping strategies.

3.1. Iterative Agreement Protocol

The Iterative Agreement Protocol (IAP) described in this
section is used to obtain valid solutions to a piMAP prob-
lem. It is similar to the protocol outlined by Sen and Durfee
[17]. Each variableVi has a unique participant who is the
designatedinitiator of Vi. The initiator proposes a single
value and collects responses from the other participants ina
sequence ofrounds. In each round, the initiator sends a sin-
gle proposal(Vi, di) and each participant decides whether
to accept or reject the proposal. Each participant follows
these steps:

• If the proposed assignment does not violate the partici-
pant’s intra-agent constraintCi, it accepts the proposal
immediately.

• Else, the agent uses a bumping strategy to determine
whether to accept or reject the proposal. (We will dis-
cuss bumping strategies in the remainder of this paper.)

• If the participant accepts the proposal, it tentatively re-
servesdi for Vi and will reject any future proposals
that conflict with this tentative assignment.

The initiator collects the responses from all participantsin
each round and follows these steps:

• The initiator checks if all participants have accepted
the current round’s proposal.

• If yes, the assignment is confirmed with all participants
in one additional round of messages and everyone re-
leases all other tentatively reserved values forVi if any.

• If no, the protocol continues in rounds until the initia-
tor has no more values to propose, in which case the
initiator declares failure and all agents release their re-
served values.

3.2. Bumping Strategies

In the Iterative Agreement Protocol, when agentAi re-
ceives a value assignment proposal(Vi, di), it must choose
whether to accept or reject the valuedi. A bumping strat-
egy is a rule employed by an agent to make this decision.
The is a key algorithmic decision point that can have a large
effect on amout of schedule disruption and scheduling fail-
ure rate.

Possible strategies differ in the amount of knowledge that
is assumed. We introduce a set of strategies that range from
completely uninformed to increasing amounts of knowl-
edge. In the informed strategies, the idea is to use knowl-
edge about agents to predict which variables will be diffi-
cult to reschedule and then avoid bumping them.

3.2.1. Uninformed These simple fixed strategies require
no knowledge.

- Always Strategy: Always accept a proposal, and
reschedule bumped variables to resolve conflicts.

- Never Strategy:Never accept a proposal if the proposed
assignment results in a conflict.

3.2.2. Simple Informed This strategy requires knowledge
of the number of participants of variables, but requires no
further knowledge of the other agents.

- NumParticipants Strategy: If a proposal(Vi, di) con-
flicts with current assignment(Vj , dj), accept the pro-
posal only if the size ofparticipants(Vj) is less than the
size ofparticipants(Vi).

The intuition is that variables with fewer participants are
easier to reschedule and so should be bumped in favor of
variables with greater participants.

What is the maximum number of bumps possible when
agents use this strategy to schedule a variableVi with n par-
ticipants? In the worst case, the initiator proposes to the
othern − 1 participants a value that conflicts with a unique
variable in each’s local schedule and each such variable has
n−1 participants. Sincen−1 < n, each of then−1 partic-
ipants ofVi will bump, resulting inn−1 bumps. In turn, the
rescheduling of then − 1 bumped variables could result in
bumps ofn− 2 variables each, for a total of(n− 1)(n− 2)
bumps. Assumingk is the minimum number of participants
for any variable, the following formula gives the maximum
number of bumps possible when scheduling a variable with
n participants and all agents use theNumParticipantsbump-
ing strategy:

Bumps(n) =

n−1−k∑

i=0

i∏

j=0

(n − 1) − j (1)

For example, ifn = 4 and every variable has at least 2
participants (k = 2), then the maximum number of bumps
possible is3 + 3× 2 = 9. An attractive feature of this strat-
egy is that it provides an upper bound on the amount of
schedule disruption that may occur.

3.2.3. Scheduling Difficulty (SD)This strategy assumes
that each agent is given or has built a model from experi-
ence of other agents’ ability or willingness to accept propos-
als. For example in the CMRadar domain discussed later,
each agent is operating on behalf of a human so the model
could take into account the stubbornness of the other agent
or its promptness of reply. To be computationally conve-
nient, we represent this model as a single number called a
“scheduling difficulty” factor. In this paper, we will use av-
erage schedule density as the scheduling difficulty factor.

Let Difficulty(Vi) be a number denoting the
scheduling difficulty of a variable Vi, i.e., if
Difficulty(Vi) > Difficulty(Vj), then finding a consis-
tent value forVi is expected to be more “difficult” than
Vj . Concretely, we calculate scheduling difficulty by cor-
relating it with the probability that a proposed value
is unassigned in all participants current schedules. Let
Deni = | V ars(Ai) | ÷ | D | be theschedule den-
sity of an agentAi. If A1,A2,...,Ak are the participants
in variable Vi, and Den1,Den2,...,Denk are the par-
ticipants respective schedule densities, we calculate the
scheduling difficulty ofVi as:

Difficulty(Vi) = (1−Den1)×(1−Den2)×...×(1−Denk)

For example, ifA1 andA2 are participants in variable
Vi, with schedule densities of .9 and .4 respectively, then the
probablity that a given value is unassigned by both partici-
pants is calculated asDifficulty(Vi) = (1−0.9)×(1−0.4) =
0.06. This is an approximation because it assumes thatA1

 0

 0.25

 0.5

 0.75

 1

Alwys Nvr NumPart SD

P
ct

 o
f F

ai
le

d
R

un
s

Bumping Strategy

Failure rate over 500 runs

Figure 2. Comparison of bumping strategies
in a four level organization hierarchy of 32
agents.

and A2 have independent schedules, which may not be
strictly true.

Finally, the bumping strategy is defined as follows.

- SD Strategy: If a proposal(Vi, di) conflicts with cur-
rent assignment(Vj , dj), accept the proposal if and only
if Difficulty(Vi) > Difficulty(Vj).

The intuition is that variables with less constrained par-
ticipants are easier to reschedule and so should be bumped
in favor of variables with highly constrained participants.

4. Experimental Results

An important component for development of DCR tech-
niques is evaluation in realistic testbeds or on realistic
benchmarks. Most existing work has focused on the use
of abstract problems such as distributed graph coloring.
We evaluate our techniques in the context of theCMRadar
Project [13] whose goal is to develop personalized assis-
tant agents that are able to make people more efficient by
automating many routine tasks such as meeting scheduling.

In this section, we first describe a simulator for gener-
ating multiagent meeting scheduling problems. Then, we
use the distributed CMRadar agents to execute the Iterative
Agreement Protocol with different bumping strategies and
present our experimental results in this domain.

4.1. Experimental Testbed

We evaluate each strategy over a number ofruns. Each
run consists of two phases, a) a centralized problem gener-
ation phase and b) a distributed problem solving phase. We
describe each phase in turn.

Problem Generation The problem generation phase has
three steps. In step one, we generate a set of CM-
Radar agents with empty calendars but each with a de-
sired schedule density as specified by an input param-

eter. Each agent’s calendar has 50 timeslots to simu-
late a 5 day, 10-hr/day work week. In step two, we re-
peatedly generate a meeting between a random subset
of the agents, choose a random mutually free times-
lot, and insert the meeting into the calendars. We con-
tinue until all calendars are filled to their desired den-
sity. The number of attendees for each meeting is cho-
sen according to a distribution in which meetings of
more people are less likely than meetings with fewer
people, and every meeting has at least two attendees.
In step three, we generate one additional new meeting
Mm+1 that must be scheduled in Phase 2. The atten-
dees of meetingMm+1 are chosen to be a random sub-
set of the agents, with the size of the meeting as an in-
put parameter. One of them is randomly chosen to be
the initiator.

Problem Solving The problem solving phase is com-
pletely distributed. The CMRadar agents live in a sim-
ulated distributed environment and are able to pass
simulated email messages between them. Their goal
is to find a timeslot for the new meeting{Mm+1}
while successfully rescheduling any bumped meet-
ings. That is, the goal is to find a valid and com-
plete assignment of timeslots to meetings. We mea-
sure the number offailed runs defined as a run in
which this goal is not achieved after a given amount
of time. Failures occur either because the initia-
tor gives up on scheduling the meeting or a max time
elapses.

4.2. Experiments in a Hierarchical Agent Organi-
zation

Human organizations typically have hierarchies in which
higher ranked people have denser calendars than lower
ranked ones. We experiment with an organization with
four levels with 8 agents in each level, for a total of 32
agents. The four levels have initial schedule densities of
90,70,50,30 percent respectively. All agents use the same
strategy. The size of the new meeting was fixed to four
agents. The empirical results over 500 runs for each strat-
egy are shown in Figure 2.

The Always strategy fails to schedule all the meetings in
most cases. Closer inspection reveals that every failure is
due to the expiration of the max time limit. We see the Al-
ways strategy is undesirable (at least when all agents em-
ploy it simultaneously) and a more discretionary strategy is
needed. The Never strategy does slightly better, but still fails
in roughly half the cases. The slightly more informed strat-
egyNumParticipantsdoes still better with a failure rate of
0.28. Finally, the failure rate is reduced to 0.02 using theSD

strategy. We conclude that theSD strategy significantly re-
duces the number of scheduling failures in our experiments.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = Always

>
 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = Never

>

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = NumPart

>
 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 R

un
s

Number of Bumps

Bump Strategy = SD

>

Figure 3. Measuring schedule disruption for
four bumping strategies.

These results demonstrate how agents are able to use addi-
tional knowledge of other agents (their schedule densities)
to make more effective local scheduling decisions.

Next, we examine the disruption caused by each bump-
ing strategy. Figure 3 shows histograms depicting the num-
ber of bumpsfor each strategy. Each histogram has on
its y-axis the number of runs out of 500 which had the
given number of bumps shown on the x-axis. Figure 3
(a) shows that the Always strategy results in a signifi-
cant number of bumps; over 350 runs had greater than
16 bumps. Figure 3 (b) shows that the Never strategy has
zero bumps for all 500 runs, as should be expected for
this strategy. Figure 3 (c) and (d) show the schedule dis-
ruption for theNumParticipantsstrategy andSD strategy,
respectively. Both strategies perform comparably, although
the SD strategy has a slightly higher average. We notice
that theNumParticipants strategy is often significantly
less than 9 as computed by Equation 1 in this case where
the new meeting has 4 participants.

Finally, Table 1 shows for each strategy the average num-
ber of rounds, messages and number of timeouts out of the
500 runs. As shown in the third column, the Always strat-
egy results in uncontrolled bumping until a max time limit is
reached. Note also that theNumParticipantsandSD strat-
egy require similar amounts of rounds and messages. This
is significant because it shows that the reduction in failure
rate shown in Figure 2 is obtained without a decrease in ef-
ficiency.

Strategy Avg Rounds Avg Msgs NumTimeouts/NumRuns
Always 300 2843 384/500
Never 13 80 0/500
NumParticipants 9.57 38 0/500
SD 10.41 49 0/500

Table 1. Number of rounds, msgs, and timeouts for four bumping strategies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

P
er

ce
nt

 o
f F

ai
le

d
R

un
s

Number of agents in organization

Failure rate with varying organization size

Never
Always
NumAtt
SD

Figure 4. Comparison of bumping strategies
with varying organization size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f F

ai
le

d
R

un
s

Size of meeting

Failure rate with varying meeting size

Never
Always
NumAtt
SD

Figure 5. Comparison of bumping strategies
with varying size of new meeting.

4.3. Varying Organization Size and Meeting Size

Figure 4 contrasts the strategies as we increase the size
of the organization. Each datapoint represents the average
of 100 runs. We see scale up to organization sizes of up to
64 agents. The qualitative results from the previous section
in which the SD strategy outperforms, continue to be seen.

Figure 5 contrasts the strategies as we increase the num-
ber of attendees in the new meeting to be scheduled. Each
datapoint represents the average over 100 runs. We see that
meetings of up to 10 agents are able to be scheduled with a
high likelihood of success (failure rate = 20%).

5. Related Work

There has been significant research on meeting schedul-
ing, but only a subset of this research has considered the
problem as inherently decentralized. Of this subset, very
few works have focused explicitly on its incremental as-
pect and the consequent bumping problem. Indeed, effec-
tive strategies for deciding when to reschedule meetings is
lacking in previous distributed meeting scheduling research.

We classify related research into three categories, mul-
tiagent meeting scheduling, distributed scheduling in other
domains, and distributed constraint reasoning.

5.1. Multiagent Meeting Scheduling

Sen and Durfee have done extensive work in multiagent
meeting scheduling [16, 17]. They formalize the multiagent
meeting scheduling problem and identify a family of nego-
tiation protocols aimed at searching for feasible solutions in
a distributed manner[17]. They also describe a contract-net
approach for multiagent meeting scheduling [16] in which
rescheduling and cancellation of existing meetings is briefly
discussed. However, rescheduling of existing meetings or
modeling of other agents to improve performance has not
been a major focus.

Freuder, Minca and Wallace [8] have previously investi-
gated meeting scheduling within the Distributed Constraint
Reasoning framework. Their work is notable for empirically
demonstrating a privacy/efficiency tradeoff in multiagent
meeting scheduling. Ephrati and collegeaues have taken an
economic approach to scheduling in which agents express
preferences for meeting times using a monetary “points”
system [6]. Their approach assumes existence of a central-
ized scheduler with a global view of all calendars, although
user preferences are distributed and may be kept private.

5.2. Distributed Scheduling

Previous research in distributed scheduling has focused
on a variety of domains including job-shop scheduling [19],
airport scheduling [3] [14] and medical scheduling [10]
[5]. One of the more influential ideas from previous re-
search in distributed scheduling has been the communica-
tion of high-level information called texture measures [19].

In this approach, agents coordinate their scheduling deci-
sions by communicating high-level information about their
local scheduling problem, such as their demand for a re-
source, so that agents can ensure resources are allocated to
the most constrained agents. The scheduling difficulty mod-
els introduced in Section 3.2 can be viewed as an instantia-
tion of this heuristic approach.

5.3. Distributed Constraint Reasoning

There exists some work in DCR dealing explicitly with
privacy concerns, most notably the work of Yokoo et al. [21]
and Silaghi et al. [18]. These approaches have focused on
the use of strong cryptographic techniques, such using ho-
momorphic encryption functions, to encode communicated
information. Yokoo et al. present a Secure DisCSP algo-
rithm that provides privacy guarantees and theoretical guar-
antees on algorithm completeness.

6. Conclusion

We have modeled an important class of scheduling prob-
lems as a form of DCR in which multiple agents must as-
sign a set of values to a set of variables according to lo-
cal intra-agent constraints and external inter-agent equality
constraints. We presented one of the first informed heuris-
tic approaches to DCR in which agents use given schedul-
ing difficulty models of other agents in order to decide when
to modify existing assignments. We show that this approach
reduces the scheduling failure rate and controls the amount
of schedule disruption. In future work, we are interested
in developing theoretically complete techniques for piMAP
and also focusing in how useful heuristic information about
other agents can be learned through experience.

Acknowledgements
This material is based upon work supported by the Defense Ad-

vanced Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the DARPA or the De-
partment of Interior-National Business Center (DOI-NBC).

References

[1] J.C. Beck, A.J. Davenport, E.M. Sitarski, and M.S. Fox.
Texture-based heuristics for scheduling revisited. InPro-
ceedings of AAAI-97.

[2] C. Bessire, A. Maestre, and P. Meseguer. Distributed dy-
namic backtracking. InIJCAI Workshop on Distributed Con-
straint Reasoning.

[3] M.H. Chia, D.E. Neiman, and V.R. Lesser. Coordinating
Asynchronous Agent Activities in a Distributed Schedul-
ing System. InProceedings of International Conference on
Multi-Agent Systems, January 1998.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[5] K. Decker and J. Li. Coordinated hospital patient schedul-
ing. In Proceedings of International Conference on Multi-
Agent Systems, 1998.

[6] Eithan Ephrati, Gilad Zlotkin, and Jeffrey S. Rosenschein. A
non–manipulable meeting scheduling system. InProceed-
ings of the 13th International Workshop on Distributed Arti-
ficial Intelligence, Seatle, WA, 1994.

[7] B. Faltings and S. Macho-Gonzalez. Open constraint satis-
faction. InPrinciples and Practice of Constraint Program-
ming - CP 2002, pages 356–370, 2002.

[8] E. C. Freuder, M. Minca, and R. J. Wallace. Pri-
vacy/efficiency tradeoffs in distributed meeting scheduling
by constraint-based agents. InIJCAI-2001 Workshop on Dis-
tributed Constraint Reasoning, 2001.

[9] L. Garrido and K. Sycara. Multi-agent meeting schedul-
ing: Preliminary experimental results. InProceedings of the
First International Conference on Multi-Agent Systems (IC-
MAS’95). The MIT Press: Cambridge, MA, USA.

[10] M. Hannebauer and S. Mller. Distributed constraint opti-
mization for medical appointment scheduling. InProceed-
ings of the Fifth International Conference on Autonomous
Agents, 2001.

[11] R. Mailler and V. Lesser. A mediation based protocol fordis-
tributed constraint satisfaction. InThe Fourth International
Workshop on Distributed Constraint Reasoning, 2003.

[12] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with qual-
ity guarantees.Artificial Intelligence, 2004.

[13] P. J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A per-
sonal assistant agent for calendar management. InAgent Ori-
ented Information Systems, (AOIS), 2004.

[14] D. Neiman, D. Hildum, V. Lesser, and T. Sandholm. Exploit-
ing Meta-Level Information in a Distributed Scheduling Sys-
tem. InAAAI, 1994.

[15] J. Oh and S.F. Smith. Learning user preferences for dis-
tributed calendar scheduling. InProc. 5th International Con-
ference on Practice and Theory of Automated Timetabling
(PATAT), Pittsburgh, PA, 2004.

[16] Sandip Sen and Edmund Durfee. A Contracting Model for
Flexible Distributed Scheduling.Annals of Operations Re-
search, 65:195–222, 1996.

[17] Sandip Sen and Edmund H. Durfee. A formal study of dis-
tributed meeting scheduling. InGroup Decision and Negoti-
ation, volume 7, pages 265–289, 1998.

[18] M.C. Silaghi and D. Mitra. Distributed constraint satisfac-
tion and optimization with privacy enforcement. In3rd IC
on Intelligence Agent Technology, 2004.

[19] K. Sycara, S. Roth, N. Sadeh, and M. S. Fox. Distributed
constrained heuristic search.IEEE Transactions on Systems,
Man, and Cybernetics, 21:1446–1461, 1991.

[20] M. Yokoo. Distributed Constraint Satisfaction:Foundation
of Cooperation in Multi-agent Systems. Springer, 2001.

[21] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed
constraint satisfaction: Reaching agreement without reveal-
ing private information. InConstraint Programming, 2002.

