
Solving Over-constrained Disjunctive Temporal Problems with Preferences

Bart Peintner and Michael D. Moffitt and Martha E. Pollack
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109 USA

{bpeintne, mmoffitt, pollackm}@eecs.umich.edu

Abstract

We present an algorithm and pruning techniques for ef-
ficiently finding optimal solutions to over-constrained in-
stances of the Disjunctive Temporal Problem with Prefer-
ences (DTPP). Our goal is to remove the burden from the
knowledge engineer who normally must reason about an
inherent trade-off: including more events and tighter con-
straints in a DTP leads to higher-quality solutions, but de-
creases the chances that a solution will exist. Our method
solves a potentially over-constrained DTPP by searching
through the space of induced DTPPs, which are DTPPs that
include a subset of the events in the original problem. The
method incrementally builds an induced DTPP and uses a
known DTPP algorithm to find the value of its optimal so-
lution. Optimality is defined using an objective function that
combines the value of a set of included events with the value
of a DTPP induced by those events. The key element in our
approach is the use of powerful pruning techniques that dra-
matically lower the time required to find an optimal solution.
We present empirical results that show their effectiveness.

Introduction
Several types of Temporal Constraint Satisfaction Problems
(TCSPs) (Dechter, Meiri, & Pearl 1991) have been used
successfully in recent years as components in planning and
scheduling applications, including Autominder (Pollack et
al. 2002) and NASA’s Mars Rover (Muscettola et al. 1998).
In planning and scheduling domains, the variables in a TCSP
represent events to be scheduled or executed by an agent,
and the constraints specify allowable times and temporal dif-
ferences between events. The main task for these applica-
tions, when given a TCSP, is to find an assignment of times
to all variables that respects all constraints.

One aspect of TCSPs that is often ignored is the task of
specifying the events and constraints that compose them.
The choice of which events to include and how much to con-
strain the events has great impact on whether the TCSP has
a solution. Typically, the burden is on the knowledge engi-
neer (KE) to reason about whether the addition of an event
or the tightening of a constraint will over-constrain the prob-
lem. In this paper, we remove the burden from the KE with a
technique that combines recent advances in reasoning about

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

preferences in TCSPs with a new approach for choosing the
optimal set of events to include in the TCSP.

To understand why specifying TCSPs can be difficult,
consider the task of defining a TCSP for a single day in
the life of an office worker. The goal (for most people) is
to get as much as possible done in that day while retaining
at least a minimum level of quality in their work. For ex-
ample, one task may be to create a presentation, which can
be done poorly in a small amount of time, or done well in
a larger block of time. Deciding whether or not to include
this task in the day’s plan depends on which other activities
are scheduled. For a busy day, we may want to exclude the
task altogether, or include it with a constraint that sets the
minimum time allocated for the task to a small value. For a
slow day, however, we would want to include the task and
set the minimum allowed time to a greater value, ensuring a
higher-quality presentation.

Two separate limitations of standard TCSPs appear in this
example. First, standard TCSPs require hard constraints,
which cannot express sentiments such as “it is better to
spend more time on a presentation than less.” Because
hard constraints often do not reflect reality, a KE specifying
bounds on time differences must reason about a trade-off: a
wider set of bounds increases the likelihood that the entire
set of constraints is consistent, while narrower bounds keeps
events closer to their ideal times. Therefore, specifying ap-
propriate bounds for a constraint requires knowledge about
the real-world situation it models and how the bounds might
effect the feasibility of the problem.

Second, TCSPs require all specified events to be included
in their solutions. This all-or-nothing requirement forces the
KE to be careful about which events to include in the prob-
lem. Adding too many events over-constrains the problem
and does not allow any solutions; adding too few events re-
sults in under-utilized resources. Therefore, knowing which
events to include in the problem requires the KE to rea-
son about how constrained the problem is — reasoning that
should be left to the TCSP algorithms.

In this paper, we remove the burden from the KE by ad-
dressing both limitations. First, we allow the KE to express
preferences, that is, to designate some bounds as more or
less desirable than others when defining a constraint. This
resolves the first trade-off: the expert can define a constraint
without regard to its affect on the TCSP as a whole. Sec-

ond, we provide a method for specifying (1) the relative im-
portance of each event, (2) which events must coexist, and
(3) the relative importance of getting highly preferable so-
lutions versus getting solutions that include many events.
Taken together, this information defines an over-constrained
TCSP with Preferences (TCSPP). We define an algorithm
that uses this information to find an optimal solution to the
over-constrained TCSPP. We focus on Disjunctive Tempo-
ral Problems with Preferences (DTPPs) (Peintner & Pollack
2004), but the results carry through to other TCSP subprob-
lems as well. We present a representation and associated al-
gorithm that allow the KE to add as many events as desired
into a DTP without worrying about how many will “fit”, and
allow the KE to specify soft constraints (preferences) with-
out regard to how they affect the rest of the problem.

Our approach is to cast the problem as a multi-objective
optimization problem: the first objective is to include as
many events as possible (plan capacity), and the second is
to choose and tighten constraints in a way that maximizes
preference (plan quality). The overall plan value is defined
to be some function over these two metrics. The general al-
gorithm itself is simple and obvious: for certain subsets of
events in the DTPP, we build an induced DTPP that con-
tains only constraints that reference the events in the subset.
Then, we solve the induced DTPP to find its optimal value.
The subset of events and associated solution that maximize
the objective function is chosen as the optimal solution.

The primary contribution of this paper is not this general
algorithm, but the pruning techniques and evaluation func-
tions we use to make the process efficient. First, we define
an evaluation function for the event set that greatly reduces
the number of event combinations that need to be checked.
Second, we show how information learned solving the in-
duced DTPP in one iteration can be used to reduce search
when solving the induced DTPP in the next.

Example
To motivate the need for optional events and preferences,
we describe an example from the domain of Autominder, a
system that currently uses DTPs to manage the daily plans
of persons with memory impairment (Pollack et al. 2003).

Consider the following constraints on an elderly woman’s
activities in late afternoon (3–5pm). She must exercise for
25 uninterrupted minutes shortly after taking heart medica-
tion, either before or after a friend visits from 3:45 to 4:15.
If Exercise ends before the visit, it is best that it ends well
before to allow her to recover (although it would be even
better for Exercise to occur sometime after the visit). The
woman would also like to knit for at least half an hour (the
yarn is brought by the visitor, so this must occur after the
visit). There is a short interview on the radio of interest from
3:00 to 3:15, and also a marathon of Matlock reruns showing
from 3pm to 5pm.

The task is to model this scenario with a DTP and use it
to determine when to take the medication, when to begin ex-
ercising, when to knit (if at all), and whether to listen to the
radio interview and/or watch the Matlock marathon. To rep-
resent this situation, we use a DTP with twelve time-points,
depicted in Table 1: a temporal reference point (TRP), which

Time-points Worth
TRP (3pm) TRP (∞)
TakeMeds T (8)
Exercise Start/End ES , EE (8)
Visit Start/End VS , VE (6)
Knit Start/End KS , KE (4)
Radio Start/End RS , RE (2)
Matlock Start/End MS , ME (1)

Table 1: Events in the Autominder example.

Constraints
C1 : T − TRP ≥ 0
C2 : VS − TRP = 45
C3 : RS − TRP = 0
C4 : MS − TRP ≥ 0
C5 : EE − ES = 25
C6 : VE − VS = 30
C7 : KE −KS ≥ 30
C8 : RE −RS = 15
C9 : ME −MS = 120
C10 : ES − T ∈ [5, 20]
C11 : KS − VE ≥ 0
C12 : (MS − EE ≥ 0) ∨ (ES −ME ≥ 0)
C13 : (RS − EE ≥ 0) ∨ (ES −RE ≥ 0)
C14 : (KS − EE ≥ 0) ∨ (ES −KE ≥ 0)
C15 : (VS − EE ≥ 0) ∨ (ES − VE ≥ 0)∗

C16 : (VS − T ≥ 0) ∨ (T − VE ≥ 0)

Table 2: DTP encoding of some constraints in the example.

is used for stating absolute (clock-time) constraints; a time-
point representing the TakeMeds event (assumed instanta-
neous); and time-points representing the start and end of
the Exercise, Visit, Knitting, Radio, and Matlock intervals.
Along with each time point, we define a weight that indi-
cates the relative importance of the event.

Table 2 shows an DTP encoding of the constraints in this
example. The constraints C1 through C4 constrain the Visit,
TakeMeds, Radio, and Matlock actions to occur after 3pm
(the time for event TRP), and C5 through C9 constrain the
durations of each action. Constraints C10 through C16 en-
code some of the more interesting aspects of the problem.
For instance, C10 represents a doctor’s recommendation that
the medication should be taken within 5-20 minutes before
exercising. C11 constrains knitting to occur after the visit.
The remaining disjunctive constraints prevent overlap of the
Exercise interval and other events in the plan. As an exam-
ple, C13 requires either the Radio action to start after Exer-
cise ends, or the Exercise action to start after Radio ends.
C16 enforces a similar constraint between the Visit action
and TakeMeds, ensuring that the woman does not interrupt
her visit to take her medication. Several other constraints
exist, expressing additional overlap restrictions and the fact
that all activities must finish by 5pm, but we do not explicitly
state these in the table.

One of these constraints, C15, is marked with an aster-
isk because each of the two disjuncts in this constraint has
varying degrees of preference, depending on the value of

Solution 1 Solution 2 Solution 3
T [15,15] T [0,10] T [75,90]
ES[20] ES[5,15] ES[80,95]
EE[45] EE[30,40] EE[105,120]
VS[45] VS[45] VS[45]
VE[75] VE[75] VE[75]
KS[75,90] KS[75,90] KS → removed
KE[105,120] KE[105,120] KE → removed
RS[0] RS → removed RS → removed
RE[15] RE → removed RE → removed

Table 3: Possible solutions for the Autominder example.

its respective temporal difference. If the first disjunct is se-
lected, we will tolerate the difference VS − EE to be 0, but
we would prefer it to be at least 5 minutes (to allow some
recovery time before the visitor arrives). We would prefer
even more for the second disjunct to be selected instead.

After careful inspection of this example, it is apparent that
there is no feasible solution that includes all events. This is
because the Matlock marathon covers the entire makespan of
the schedule, and thus overlaps with all other actions. Now,
suppose we ignore the Matlock marathon and its respective
constraints. For this problem, there is a feasible solution,
given as Solution 1 in Table 3. Unfortunately, since the plan
is fairly compact, it allows no time for the woman to recover
between Exercise and the visit. Thus, we satisfy constraint
C15 at the lowest level. If we remove the Radio action and
its constraints, we get Solution 2, where the Exercise inter-
val is moved forward, giving slightly more time before the
visitor arrives. To achieve the highest preference level for
C15, we would also need to remove the knitting action and
its constraints — this allows Solution 3, where Exercise can
occur after the visit.

This example demonstrates the inherent trade-off between
plan capacity and plan quality. Larger problems that involve
an inordinate number of events are at even greater risk of
being over-constrained, admitting either no solutions or so-
lutions that meet only a minimal set of standards.

Background
STPs and DTPs
The most restricted subclass of temporal CSPs is the Simple
Temporal Problem (STP). An STP is a pair 〈X, C〉, where
the elements Xi ∈ X designate time-points, and C is a set
of binary temporal constraints of the following form:

Xj − Xi ∈ [aij , bij].

A solution to an STP (or any TCSP) is an assignment
of values to time-points that satisfies all constraints. An
STP is said to be consistent if at least one solution exists.
Consistency-checking in an STP can be cast as an all-pairs
shortest path problem in the corresponding network: the
STP is consistent iff there are no negative cycles in the all-
pairs graph. This check can be performed in O(|X|3) time.
A by-product of this check is the minimal network, which is
the tightest representation of the STP that still contains all
solutions present in the original network. A single solution

can be extracted from the minimal network in O(|X|2) time
(Dechter, Meiri, & Pearl 1991).

A Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 2000) is a pair 〈X, C〉, where each element of
C is a disjunction of STP constraints as in the following:
(Xj1−Xi1 ∈ [ai1j1, bi1j1])∨ (Xj2−Xi2 ∈ [ai2j2, bi2j2])∨

· · · ∨ (Xjn − Xin ∈ [ainjn, binjn]).
To satisfy a DTP constraint, only one of its disjuncts needs

to be satisfied. An assignment that satisfies at least one dis-
junct in each constraint is a solution to a DTP.

DTPs are useful in planning and scheduling applica-
tions because they can represent the so-called promotion/-
demotion constraints that frequently occur. In addition,
plans and schedules often allow activities to occur at mul-
tiple times or allow multiple activities to be assigned to a
single time slot; disjunctive constraints model both of these
situations well.

Recent work has used partial constraint satisfaction to
solve over-constrained DTPs (Moffitt & Pollack 2005). The
approach differs from ours in that it reasons about removing
only constraints and not events, and that it does not reason
about the degree to which a constraint is satisfied.

Meta-CSP formulation of DTP
A key construct used for solving a DTP is a component STP,
which is created by selecting one disjunct from every DTP
constraint. A given DTP has a solution if and only if one of
its component STPs does. Therefore, the search for a solu-
tion to a DTP can be carried out by searching for a solution
in each of its component STPs.

Finding a solution to an STP requires only polynomial
time, but a DTP can have an exponential number of com-
ponent STPs. Fortunately, backtracking search and pruning
techniques make this approach practical in many cases: the
component STP is built up one disjunct at a time, backtrack-
ing if the current set of disjuncts are inconsistent.

The search through a DTP’s component STPs is often
cast as a search through a meta-CSP derived from the DTP.
Each variable in the meta-CSP corresponds a disjunctive
constraint in the DTP; each disjunct in the disjunctive con-
straint is represented by a single value in the meta-CSP vari-
able. Assigning a meta-CSP variable to a particular value is
therefore equivalent to choosing a particular disjunct from
a constraint to include in a component STP. Consequently,
a set of assigned variables in the meta-CSP defines an STP
composed of all disjuncts implied by the assignments.

Representing Preferences in DTPs
Allowing preferences to be defined on each DTP constraint
gives the KE the ability to avoid the trade-off inherent in
defining hard bounded constraints.

To extend a DTP to a DTP with Preferences (DTPP), dis-
juncts of every constraint are assigned a preference function
that maps each value in the allowed interval identified by
that disjunct to a preference value, a quantitative measure
of the value’s desirability. Hence the disjuncts in a DTPP
constraint take the following form:

< Xj − Xi ∈ [aij , bij], fij : t ∈ [aij , bij] → � > .

In our example, we alluded to these preference functions
when discussing constraint C15, which precluded the over-
lap of the Exercise and Visit intervals. For the first disjunct,
0 minutes was acceptable, while 5 minutes or more was bet-
ter. Hence, its preference function could output the value 1
for any time difference greater than 0 and less than 4, and
2 for any difference greater than or equal to 5. Also, re-
call that any assignment which chooses the second disjunct
should have an even higher preference level. So, the pref-
erence function for that difference could be 3 for all values
greater than 0. If desired, other constraints could be given
their own preference functions as well. For instance, prefer-
ences on durations or start times can also be specified.

The addition of preference functions changes the problem
from one of finding any solution for the problem to find-
ing the optimal solution. We evaluate the quality of some
solution with some objective function that takes as input
the output of each constraint’s preference function. In this
paper, we use the maximin function, which sets the prefer-
ence value vP of a solution to the minimum value of all the
preference function outputs. The maximin function leads to
efficient algorithms for finding optimal solutions to DTPPs
(Peintner & Pollack 2004).

Basic Approach
In this section, we provide a means to reason about poten-
tially over-constrained DTPPs, balancing the trade-off be-
tween plan capacity (i.e., the set of events included in the
solution), and plan quality (i.e., the degree to which each
preference function is satisfied in the solution). To manage
this trade-off, we need (1) a way to evaluate the value of in-
cluding a particular set of events, (2) a way to evaluate the
induced DTPP for that set of events, and (3) a global objec-
tive function that combines the value of both to produce the
overall plan value. We will discuss all three in turn.

To determine the value of including a set of events, we
first augment the DTPP representation to include a weight
vector that specifies the cost of excluding each event xi,
w(xi). We defined the costs for each event in our exam-
ple in the last column of Table 1. We then define the value
of including a set of events to be the negative of the cost
of the most important event excluded. Therefore, if we par-
tition the set of events X into two sets, the included set,
EI , and the omitted set, EO, then the value of that parti-
tion is vE = −maxx∈EO

w(x). For instance, Solution 3 of
our example includes the events {T,ES , EE , VS , VE} and
omits events {KS ,KE , RS , RE}. The most important ex-
cluded events are KS and KE , each with a cost of 4. There-
fore, the value of this partition is −4. The value is negated
because our global objective function will maximize value
rather than minimize cost.

This choice of evaluation function provides the key ben-
efit and key drawback of our approach. Notice that if we
modify the partition just described by moving events RS

and RE to the included set, the value of the partition does
not change (knitting is still the most important excluded ac-
tion) even though the new partition is clearly superior. In
other words, our evaluation function is not guaranteed to
identify a Pareto optimal set of events. Of course, other

evaluation functions exist — for instance, to calculate the
weighted sum of the included events, as is typically done in
weighted CSPs (Schiex, Fargier, & Verfaillie 1995), or to ap-
ply the leximin operator when comparing solutions (Dubois,
Fargier, & Prade 1996b). The reason that we choose the less
informative metric is that it provides an advantage we ex-
ploit heavily in our algorithm: we do not need to explore all
possible combinations of included events — if some event
with a weight w is excluded, then all events with weights
equal or lower than w will be excluded as well. One side-
effect of this requirement is that we can link together events
that must co-exist by assigning them the same weight. For
example, if the start of the knitting action is included, then
the end of knitting should be included as well.

Using this property, we define what constitutes a “legal”
set of events to include in a given problem: a partition of
events into an included set EI and omitted set EO is le-
gal iff there exists an event xo with weight w(xo) such that
all events in EI have weight greater than w(xo), and all
members in EO have weight less than or equal to w(xo).
Again, the value of such a partition is vE = −w(xo). This
approach bears resemblence to (Dubois, Fargier, & Prade
1996a), where all constraints less than a given threshold
are ignored, while those above the threshold are enforced
as hard constraints. Although this requirement seems strict,
it makes sense for many practical situations; the events in
plans, for example, often have dependencies in which the
execution of one event is required to enable the execution of
other events.

To determine the value of an induced DTPP for a parti-
tion, we find the optimal solution value for the DTPP us-
ing the DTPP Maximin algorithm, which is described in the
next section. A solution of quality vP for a DTPP is one in
which the output of each preference function has value vP

or greater. DTPP Maximin finds a solution that maximizes
vP .

Finally, to evaluate the overall plan value, we use a
weighted sum of the plan capacity and the plan quality,
wP vP + wEvE . The setting of the parameters wP and
wE depends largely on the relative magnitude of the event
and temporal preference value functions, and can be cho-
sen based on the desired trade-off between plan capacity
and plan quality. We choose this function for simplicity;
any continuous function of the two elements can be used, as
long as the function is nondecreasing in the parameters vP

and vE .
Now that the objective criterion has been defined, we

present a simple algorithm, called Grow DTPP, to find the
optimal combination of the value of included events and the
value of the corresponding induced DTPP. The basic idea
is to iteratively build an induced DTPP one event level at a
time, finding the value of its optimal solution during each
iteration. The algorithm is given in Figure 1.

As input, the algorithm accepts a possibly over-const-
rained DTPP, T , a set of weights, W , and a global evaluation
function fG. We initialize a partition of the set of events by
setting the included set EI to be empty and an omitted set
EO containing all events, sorted by weight. The induced
DTPP used in the algorithm is denoted by T (EI), since it is

Algorithm: Grow DTPP
Input:

T = 〈E, C〉 : A DTPP with |E| events and |C| constraints
W = {w(x) : x ∈ E} A mapping from events to weights.
fG : {vE , vP } → � : The global value function.

Output:
An event set and component STP that maximizes fG.

Initialization:
Let EI ← �; // The initial included event set.
Let EO ← E; // The initial omitted event set sorted w.r.t w.
Let bestSolution← �;
Let bestValue← −∞;

Algorithm:
1. while(EO �= �)
2. newEvents← {xo ∈ EO : w(xo) = maxx∈EO w(x)}
3. Let EI ← EI∪ newEvents, EO ← EO\ newEvents
4. Let vE ← −maxx∈EO w(x);
5. currentSolution← DTPP Maximin(T (EI));
6. If currentSolution is null, return bestSolution;
7. Let vP ← valueOf(currentSolution); // Get induced DTPP value
8. Let vG ← fG(vE , vP);
9. If (vG> bestValue)
10. bestValue← vG;
11. bestSolution← {EI , currentSolution};
12. end
13. end
14. return bestSolution;

Figure 1: Grow DTPP: A basic algorithm for solving over-
constrained DTPPs.

a subset of T determined by the included events.

The algorithm begins by moving the most heavily weight-
ed events from EO to EI (Lines 2 and 3). This step in-
creases the value of the event partition (calculated in Line 4)
but further constrains the induced DTPP because new con-
straints may be added. Next we use the DTPP algorithm
DTPP Maximin (Line 5) to obtain an optimal solution to the
induced DTPP T (EI). If no solution exists, we can safely
exit (Line 6), since the remaining steps can only add con-
straints. Otherwise, the value of this solution is assigned to
vP (Line 7), and the global value is computed (Line 8). If the
global value exceeds the value of the current best solution,
the best value and solution are updated (Lines 9-12).

Then, the next highest events in EO are moved to EI , and
the process repeats until all events have been moved into
the included set or until the induced DTPP does not have a
solution.

The algorithm as presented uses the DTPP Maximin algo-
rithm as a black box when solving the induced DTPP. This
strategy is needlessly wasteful from a constraint satisfaction
point of view, since all information learned during search is
lost between iterations. Later, we define pruning techniques
that store small amounts of information learned in early it-
erations to reduce search in later iterations. Understanding
these techniques, however, first requires a basic understand-
ing of how the DTPP Maximin algorithm works.

Finding maximin optimal solutions to DTPPs
In this section we describe our two-phase algorithm for find-
ing a set of maximin optimal solutions to DTPPs with unre-
stricted preference functions (Peintner & Pollack 2004) —
the call on Line 3 of the Grow DTPP algorithm in Figure 1.
DTPP Maximin will be called once for every candidate set
of included events chosen by the main loop.

The goal of DTPP Maximin is to find some component
STP of the DTPP that allows assignments with maximum
values; the value of an assignment is determined by the dis-
junct whose preference function produces the minimal value
for that assignment. An assignment with maximum value
is called a maximin-optimal assignment. DTPP Maximin
searches the space of component STPs to find one that con-
tains an optimal assignment.

Phase 1 of DTPP Maximin
The first phase of the algorithm reduces the DTPP to a set
of hard DTPs, which will be searched for solutions in the
second phase. Each DTP in the set represents the DTPP
projected at a particular preference level. Intuitively, a hard
DTP projected at level i consists of only the parts of the
DTPP that could participate in a solution with a maximin
value of i or greater. Therefore, if a solution of maximin
value i exists in the DTP, it can be found by searching the
DTP projected at level i. The maximin optimal solution of
the DTPP can be found by searching the individual projected
DTPs: the highest-level projected DTP for which a solution
can be found is the maximin optimal value.

The idea of projecting hard constraints from constraints
with preferences is not specific to DTPPs. The idea was
introduced for an algorithm that found maximin-optimal
(Weakest Link Optimal) solutions to STPs with Preferences
(Khatib et al. 2001).

The output of this phase is an organized collection of STP
constraints called a preference projection.

Definition 1 A preference projection relative to a prefer-
ence value set A for a DTPP T = 〈X, C〉, is a set of in-
tervals, {pa

ck|a ∈ A, c ∈ C, k is a disjunct in c}, where
pa

ck = {x|fck(x) ≥ a} and fck is the preference function
for disjunct k in c. A preference value set is an ordered set
of positive real numbers.

Figure 2: A DTPP constraint containing two disjuncts and its pref-
erence projection relative to the set {1, 2, 3, 4}. The circles and
dashed lines define a tree within the function view of the first dis-
junct. Each interval in the tree is the child of the interval below it.

Each interval in the preference projection represents a
hard constraint over the time-points in the disjunct from
which it was projected. The intervals can be viewed in two
ways: as a collection of disjuncts for every preference level
or as a collection of disjuncts for every constraint. The net-
work view groups the hard constraints by preference level,
resulting in a DTP for each preference level. For example,
the network view for a preference projection is a set of |A|
DTPs, where DTPi = {pi

ck|c ∈ C, k ∈ c} is the hard DTP
projected at preference level i.

The function view groups the hard constraints by prefer-
ence function and represents all constraints originating from
a single preference function. Pc = {pa

ck|a ∈ A, k ∈ c}
is the function view for a particular disjunct k of constraint
c. We often organize the constraints in a function view into
a tree, where a hard constraint at one level is the parent of
all hard constraints in the level above it. All standard par-
ent/child relationships exist for this tree, with a parent al-
ways one level lower than its children. A child in this tree
is always tighter than its parent; meaning, the set of tem-
poral difference values allowed by the child is a subset of
those allowed by its parent. We can define the parent rela-
tion for entire STPs as well: STP1 is a child of STP2 if each
constraint in STP2 is a parent to some constraint in STP1;
an STP is always tighter than its parent. The ancestor and
descendant relations among STP constraints and STPs have
obvious meanings.

Figure 2 shows an example of a single DTPP constraint
and its preference projection relative to the preference value
set {1, 2, 3, 4}. It shows the network view, which consists
of four DTPs1, and the function view for the first disjunct.
The tree formed from the intervals in the function view is
important for understanding the second phase.

The first phase of DTPP Maximin is illustrated in the left
half of Figure 3, where a single DTPP is projected into |A|
hard DTPs.

Phase 2 of DTPP Maximin
The second phase attempts to solve the set of DTPs by
searching for a consistent component STP within them. The
phase starts by searching the bottom-level DTP until a con-
sistent component STP is found. Then the search moves up
to the DTP at the next level. The goal is to find the DTP with
highest preference value that contains a consistent compo-
nent STP.

One property of the preference projection that leads to an
efficient algorithm is called the upward inconsistency prop-
erty; it says that each descendant of an inconsistent compo-
nent STP is inconsistent as well. This property holds be-
cause each STP is tighter than any of its ancestors at lower
levels. If no solution exists in one STP, no tighter version of
that STP can contain a solution either.

Property 1 Upward Inconsistency. If a component STP of
DTPq is inconsistent, then any of its descendant component
STPs in DTPp for p > q will also be inconsistent.

1In this case, each DTP has only one constraint.

The upward inconsistency property allows us to prune
away a large part of the search space each time an incon-
sistent STP is found. For example, if the algorithm finds
an inconsistent STP while searching the hard DTP at prefer-
ence level 1, then it can prune away all descendant STPs at
level 2 and above. Therefore, during the search through all
projected DTPs, we can avoid checking many of the com-
ponent STPs for consistency by remembering which com-
ponent STPs at lower levels are inconsistent. “Remember-
ing” in this case does not require additional storage; rather,
it simply requires a jump ahead in the search space. We do
not present the details of this search here (see (Peintner &
Pollack 2004)). Instead, we sketch the basic steps:

1. Using any standard meta-CSP-based DTP solver (e.g.
(Tsamardinos & Pollack 2003)), start searching the hard
DTP projected at the lowest preference level.

2. If a consistent component STP S is found, store it as
“best” and begin searching the hard DTP for the next
highest preference level.

3. When moving to a DTP at a higher level, start the search at
the first child of S, skipping all earlier component STPs.

4. When a solution at the highest DTP has been found or
some other DTP has been fully searched, return “best”.

Using a careful ordering of the search space, Step 3 of this
algorithm sketch can be guaranteed to only skip component
STPs that are descendants of STPs found to be inconsistent
at lower levels (using the upward inconsistency property).
The right half of Figure 3 shows a sample Phase 2 search
trajectory that illustrates the use of the upward inconsistency
property: component STP1

3 was skipped in the search be-
cause its parent STP1

2 was found to be inconsistent.

Pruning Techniques
The basic Grow DTPP algorithm can be significantly en-
hanced with three pruning techniques that use information
learned while solving the induced DTPP in one iteration to
reduce search in later iterations.

Each of the three pruning techniques depends in some
way on a basic property that relates induced DTPPs at differ-
ent iterations: each induced DTPP is at least as constrained
as those at previous iterations. This property is ensured be-
cause each iteration adds at least one event that may cause
the addition of more constraints. If no constraints are added,
the induced DTPP remains unchanged; if one or more con-
straints are added, the problem becomes more constrained.

Global Upper Bound
The first pruning technique uses the basic property described
above to calculate an upper bound for the global objective
function in the Grow DTPP algorithm.

Since we know that the induced DTPP tightens after each
iteration, we also know that the value of optimal solutions
to the series of induced DTPPs will monotonically decrease.
For example, if the induced DTPP at iteration i, Ti, has op-
timal value vi

P , we know there is no solution to Ti at level
vi

P + 1. Since the difference between Ti and Ti+1 is a set of

DTPP

DTP|A|

DTP3

DTP2

DTP1 STP 1
1

STP 1
2

STP 1
3 STP 2

3

STP 2
2 STP 3

2 STP 4
2

STP 2
1 STP 3

1

STP 3
3

STP 2
|A|STP 1

|A|

Network view Search space

Phase I: Create preference projection Phase II: Find maximum j such that for some i, STP is consistenti
j

start

Figure 3: The two phases of solving a DTPP. Phase 1 projects the DTPP onto |A| DTPs, each consisting of many component STPs. Phase
2 searches through the space of component STPs, starting at the bottom level and moving up one level each time a consistent STP is found.
The dotted lines between STPs denote a parent/child relationship. A sample search trajectory is shown, with filled in circles representing
consistent STPs and empty circles representing inconsistent STPs. The maximin optimal solution is STP2

3.

additional constraints, then we know that Ti+1 does not have
a solution at level vi

P +1 either. Therefore, vi
P ≥ vj

P : i < j.
Given this knowledge, we can calculate the upper bound

for the global function at iteration i+1 to be fG(0, vi), where
0 is the value of including all events and vi is the value of
the optimal solution to Ti. We can use this upper bound to
determine whether early termination of the algorithm is war-
ranted. For this, we make three changes to the Grow DTPP
algorithm. First, we initialize a globalUpperBound variable
to an infinite value. Second, we calculate the upper bound
by adding the following statement between lines 12 and 13:
globalUpperBound = fG(0, vP). Finally, we change Line
1 to force termination if the upper bound is not greater than
the best value found so far. If the upper bound is not greater,
no improvement is possible, so further search is unnecessary.

DTPP Bounds
Where the first pruning technique computes an upper bound
for the global value, the second calculates an upper and
lower bound that is used by DTPP Maximin. We already
discussed that the value of the induced DTPP solution for
iteration i is the upper bound for the value of the induced
DTPP solution in iteration i + 1. Therefore, we can restrict
DTPP Maximin from searching any projected DTPs at pref-
erence levels greater than the upper bound. Thus, if the opti-
mal value for both iterations i and i + 1 is k, then the solver
can terminate as soon the level k solution is found during
iteration i + 1. If it did not recognize the upper bound, the
solver would have to fully search level k + 1.

We can also compute a lower bound for DTPP Maximin
using the global optimality function and the value of the
current best solution. Consider a case in which the algo-
rithm has just completed iteration 2, and assume the objec-
tive functions produced the values: vP = 5, vE = −4, and
vG = 1 (both weights in fG are 1). Assume that this is cur-
rently the best solution. Now, when the third iteration be-

gins, a new event is moved to the include set EI , increasing
the vE value to −2. When solving the new induced DTPP,
a vP value of 3 or less would not be useful, since the new
vG would not exceed 1, the global value of the best solu-
tion. Therefore, a lower bound of 4 can be passed in to the
DTPP Maximin algorithm, allowing it to avoid searching
levels 1-3. More generally, the lower bound indicates that
any solution to the DTPP with a value less than the lower
bound will not be useful, so we can jump directly to the pro-
jected DTP whose preference level matches the lower bound
in Step 1 of the algorithm sketch.

To compute the lower bound, the global evaluation func-
tion must be reversible. For the weighted sum function this
is simple: min vP = (vG −wEvE)/wP , where vG is set to
1 greater than the value of the best solution.

Component STP Skip
Since each induced DTPP is tighter than previous ones, there
exists a property that is analogous to the upward inconsis-
tency property: the persistent inconsistency property. This
property says that any component STP found to be inconsis-
tent in one iteration will remain inconsistent in all later iter-
ations. Using this property, parts of the search space can be
pruned on subsequent iterations. Specifically, when search-
ing an induced DTPP, we skip (partial) component STPs that
have already been checked.

To implement this skip during the DTPP Maximin algo-
rithm, we store at each level the component STP that was
found to be consistent — the point in the search space where
the algorithm moves up to the next preference level. All ear-
lier points are known to be inconsistent.

It is not immediately apparent how storing the search
points in one DTPP can help solve another — after all, they
contain different constraints. We know, however, that the
only difference between an induced DTPP and the one that
follows it is a set of newly added constraints. All constraints

in the first still exist unchanged in the second. Therefore,
if we simply append the new constraints to the end of the
constraint list, the two search spaces will become aligned.
As a result, the search trajectory for the first induced DTPP
matches the search trajectory for the second — at least up to
the stored search point.

The result of the pruning achieved by the upward incon-
sistency and persistent inconsistency properties is that no in-
consistent component STP is ever checked twice. The only
component STPs that are checked twice are those found to
be consistent during some iteration. The maximum num-
ber of iterations in the algorithm is the number of events in
the algorithm, |E|. The number of consistent component
STPs per iteration is bounded by the number of preference
levels (|A|), since the algorithm moves up one level each
time a consistent component STP is found. Therefore, we
can bound the complexity of the total search for all calls
to DTPP Maximin to be the sum of (1) the complexity of
searching all projected DTPs of the largest induced DTPP
tried and (2) |A| ∗ |E| STP consistency checks.

Although this pruning technique is possibly the least pow-
erful (savings average around 10% when applied alone), its
analysis tells us that the cost of incrementally growing the
DTPP is small: the complexity of the algorithm depends
more on the size of the largest DTPP tried than on the num-
ber of iterations. In practice, when this technique is com-
bined with the previous two pruning techniques, the time
required to iteratively build up a large induced DTPP can be
much less than directly solving the induced DTPP for the
final iteration.

Experimental Results
We now present empirical results that show (1) the effec-
tiveness of our pruning strategies during the DTPP Maximin
search, (2) how our algorithm compares to an “all-knowing”
oracle, and (3) how the algorithm behaves as the number of
specified events increases.

Since the goal of Grow DTPP is to find a set of events
that maximize the global objective function, we can deter-
mine a lower bound for the run-time of Grow DTPP by tim-
ing DTPP Maximin on the optimal set of events. In other
words, we pretend an oracle delivers the optimal event set in
advance, and use DTPP Maximin to find the solution of the
induced DTPP. We refer to this algorithm as Oracle.

We report a comparison of Oracle and two versions of the
Grow DTPP algorithm: one with all three pruning strate-
gies, called With Pruning; and one with only the first pruning
strategy, called Standard. We use the Global Upper Bound
technique in both algorithms because it functions as a ter-
miniation condition that, if not used, would greatly skew the
results. We also show how the run-time of With Pruning de-
pends not on the number of events in the original problem,
but only on the number of events that “fit” in the DTPP.

Setup
We generated random over-constrained DTPPs using a set
of parameters shown in Table 4.

Generating random DTPPs We begin the process of gen-
erating a DTPP by creating a set of events and assigning a
random weight to each. The number of events is governed
by numEvents, while the weight is determined by maxEvent-
Weight. We fixed maxEventWeight at numEvents/2, so that
on average 2 events share each weight.

Next, we create numConstraints constraints. To create a
constraint, we first create numDisjuncts disjuncts, choosing
the events randomly for each, and choosing the upper and
lower bounds using values between minDomain and max-
Domain. The result is a hard DTP constraint.

Next, we attach a preference function to each disjunct us-
ing the last three parameters in Figure 4. Rather than defin-
ing the function for each time difference directly, we instead
define the interval(s) that exist at each level, i.e., the function
view of the preference projection for each disjunct.

We begin by defining the interval for the lowest level to be
the hard bounds of the corresponding disjunct. To determine
the interval width of the child constraint at the next level,
a random value from the real interval [reductionFactorLB,
reductionFactorUB] is multiplied by the width of interval at
the current level. The interval’s lower bound is selected by
adding a random value from the interval [0, previous width
− new width] to the lower bound of the parent’s interval.

For example, consider a disjunct whose bounds form the
interval [−3, 12]; we set the lowest preference level to be
this interval. Let the reductionFactorLB = .5 and the reduc-
tionFactorUB = 7. If the randomly chosen reduction factor
is 0.6, then the width of the new interval will be 0.6*15 = 9.
The new interval’s start bound could be placed anywhere in
the interval [-3, 3]. We can choose a value in this interval by
choosing from the interval [0, 15 − 9] and adding it to −3.

This process continues for each level until the maximum
number of levels has been reached or the constraint width at
some level reduces to 0. The result is a semi-convex func-
tion2 as in the second disjunct of Figure 2.

Space of DTPPs tested Given the number and range of
parameters, it is difficult to sufficiently cover the range of
possible DTPPs types. For this experiment, we fix each pa-
rameter to a default value and vary one parameter at a time.
The defaults are shown in the left column of Table 4.

In addition to varying the parameters of the DTPP, we var-
ied the weights for the event set value wE and the preference
value wP to see the effect of different global optimality func-
tions on run-time.

We ran four tests, each of which varied the following pa-
rameters independently:

Preference function shape The preference function shape
determines how many preference levels exist. We tried
preference functions that ranged from very shallow slopes
(reductionFactorLB = [.3,.4]) to very steep slopes (reduc-
tionFactorLB = [.8,.99]), and functions with highly varied
slopes (reductionFactorLB = [.5,.99]).

Constraint Density We varied the number of constraints
(i.e. the amount by which the problem is over-const-

2A semi-convex function is one in which, for all Y , the set {X :
f(X) ≥ Y } forms an interval (Khatib et al. 2001).

20 numEvents The number of events in the DTPP
10 maxEventWeight The maximum weight that an event can have. Minimum is 0.
40 numConstraints The number of dual bounded constraints
2 numDisjuncts The number of disjuncts per constraint
-100 minDomain Minimum value of any STP interval
500 maxDomain Maximum value of any STP interval
15 numLevels The maximum number of preference levels in a constraint
.5 reductionFactorLB Minimum fraction of an STP interval width at level i that will exist at level i + 1
.9 reductionFactorUB Maximum fraction of an STP interval width at level i that will exist at level i + 1

Table 4: Parameters used to generate random DTPPs and their default values.

rained), using values 20, 30, 40, 50, 60, and 70, which
is 1 to 3.5 times the number of events3.

Weight ratio The ratio of the event set value weight (wE)
and the preference value weight (wP) was varied using
values 15, 10, 5, 2, and 1. We do not report on ratios
less than 1 because they tend to create solutions with few
events and have run times similar to problems of ratio 1.

Problem size invariance For three different problem sizes,
we showed that the running time for problems whose so-
lutions had equal number of events was relatively con-
stant. The three problem sizes were 20 events, 30 events,
and 40 events. The constraint density was fixed at 2.

The first three tests averaged the results from 500 ran-
domly generated DTPPs, while the data for the fourth test
was extracted from 3000 DTPPs. To analyze the results from
the fourth test, we calculated the average running time for
each problem size/solution size pair. For example, we found
all instances in which problems with 30 specified events had
15 events in their solution and averaged their run times. The
intent is to show that the average running times for problems
with m events in their solution is not dependent on whether
the original problem contained 20, 30 or 40 events.

The algorithms were implemented in Java and the tests
were run in a WindowsXP OS using a 3GHz hyper-threaded
Pentium 4 processor. Hyper-threading limits the CPU us-
age of any single process to 50%, so the full speed of the
processor was not utilized. Running time for the algorithms
was measured using a library that counts only the amount of
time the main thread is running, so garbage collection and
other system threads do not affect the run-time reported.

Results
We first show the comparison of run-times for Oracle, With
Pruning, and Standard. Figure 4 shows the run times for
each algorithm on the first three tests (Preference function
shape, Constraint Density, and Weight ratio) and for only
With Pruning on the fourth test (Problem size invariance).

Graphs (a), (b), and (c) in Figure 4 show that the prun-
ing techniques cut run-time regardless of preference func-
tion slope, constraint density, or weight ratio. On aver-

3The ratios are small compared to other reports because the
DTP constraints we describe are dual-bounded, rather than the
more common single-bounded variety. To represent a DTP con-
straint with k dual-bounded disjuncts requires 2k single-bounded
disjuncts.

age, pruning cut run-time by 45-60%, a significant savings.
Other tests not shown attributed about a quarter of this sav-
ings to the Component STP Skip technique and the rest to
the DTPP Bound technique. (Remember that we used the
Global Upper Bound technique in all tests.) Oracle clearly
out-performs the other two algorithms, which is not surpris-
ing since the Grow DTPP algorithms usually solves prob-
lems that contain more than the optimal number of events.

We notice in the test for varying weight ratios (Graph (c))
that the run-time decreases as the value of the induced DTPP
is weighted more heavily. When the wP value is higher than
wE (i.e. the ratio is < 1), few iterations occur in the al-
gorithm because the best solutions are always the ones with
few events and high valued solutions.

The most important result is found in Graph (d). Recall
that our goal is to allow the KE to add as many events and
constraints as desired without concern for how it affects the
network. It is crucial therefore that the run-time does not
increase substantially as the number of specified events in-
creases. Graph (d) shows that we have achieved this goal.
For example, for all problems whose solutions contained 25
events, the average running time for problems with 30 spec-
ified events equaled the average running time for those with
40 specified events. For other solution sizes, the difference
between the three curves are very small.

Conclusion
In this paper, we have described an approach for solving pos-
sibly over-constrained DTPs with Preferences. Our goal was
to simplify the task for the KE by addressing two limitations
of TCSPs and their associated algorithms: the inability to
reason about optional events, and the trade-off inherent in
defining hard constraints. Our approach allows the KE to
prioritize events and to express preferences when defining
constraints so that the KE can focus on accurately defining
local information without regard to the problem as a whole.

Our method solves an over-constrained DTPP by search-
ing through the space of induced DTPPs, which are DTPPs
that include only a subset of the events in the original prob-
lem. The method incrementally builds an induced DTPP
and uses a known DTPP algorithm to find the value of its
optimal solution. Optimality is defined using three objec-
tive functions: one that defines the value of a set of included
events, one that defines the value of a DTPP induced by the
included events, and a third that combines the results of the
first two into an overall score. The main contribution is a

(a) (b)

(c) (d)

Figure 4: Run time in seconds for each of the four tests. The dotted boxes denote the data points that correspond to our default parameters.
Graph (a) shows the run-times for different reduction factor bounds: lower bounds produce shallow slope functions with few preference
levels. Graph (b) shows run-times for different constraint densities. Graph (c) shows the run-times for different −vE/vP ratios. Graph (d)
shows the run-times for problems whose solutions had the same number of events.

set of three pruning techniques that were empirically shown
to dramatically reduce the time required to find the optimal
solution. The key result is that solving times depend on the
size of the solution, not on the size of the original problem.

We believe the main deficiency in this approach is the use
of the maximin optimality function for both the event sets
and the induced DTPPs. A utilitarian optimality function
(maximizing the sum of the values of all elements) would be
a better choice for our application. We are currently working
on algorithms that will efficiently find high-quality utilitar-
ian solutions to DTPPs.

Acknowledgements
This material is based upon work supported by the Air Force Of-
fice of Scientific Research, under Contract No. FA9550-04-1-0043
and the Defense Advanced Research Projects Agency (DARPA),
through the Dept. of the Interior, NBC, Acquisition Services Divi-
sion, under Contract No. NBCH-D-03-0010. Any opinions, find-
ings and conclusions or recommendations do not necessarily reflect
the view of the United States Air Force, DARPA, or the Department
of Interior-National Business Center.

References
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49:61–95.
Dubois, D.; Fargier, H.; and Prade, H. 1996a. Possibility theory
in constraint satisfaction problems: handling priority, preference
and uncertainty. Applied Intelligence 6:287–309.
Dubois, D.; Fargier, H.; and Prade, H. 1996b. Refinements of
the maximin approach to decision-making in fuzzy environment.
Fuzzy Sets and Systems 81:103–122.

Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001. Temporal
constraint reasoning with preferences. In Proceedings of the 17th
International Joint Conf. on Artificial Intelligence 1:322–327.
Moffitt, M. D., and Pollack, M. E. 2005. Partial constraint satis-
faction of disjunctive temporal problems. In Proceedings of the
18th International Florida Artificial Intelligence Research Soci-
ety Conference.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C. 1998.
Remote agent: To boldly go where no AI system has gone before.
Artificial Intelligence 103(1-2):5–47.
Peintner, B., and Pollack, M. E. 2004. Low-cost addition of pref-
erences to DTPs and TCSPs. In Proceedings of the 19th National
Conference on Artificial Intelligence, 723–728.
Pollack, M. E.; McCarthy, C. E.; Ramakrishnan, S.; Tsamardinos,
I.; Brown, L.; Carrion, S.; Colbry, D.; Orosz, C.; and Peintner,
B. 2002. Autominder: A planning, monitoring, and reminding
assistive agent. In Proceedings of the 7th International Conf. on
Intelligent Autonomous Systems 7.
Pollack, M. E.; Brown, L.; Colbry, D.; McCarthy, C. E.; Orosz,
C.; Peintner, B.; Ramakrishnan, S.; and Tsamardinos, I. 2003.
Autominder: An intelligent cognitive orthotic system for peo-
ple with memory impairment. Robotics and Autonomous Systems
44(3-4):273–282.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems: Hard and easy problems. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence.
Stergiou, K., and Koubarakis, M. 2000. Backtracking algorithms
for disjunctions of temporal constraints. Artificial Intelligence
120:81–117.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution tech-
niques for Disjunctive Temporal Reasoning Problems. Artificial
Intelligence 151(1-2):43–90.

