
Efficiently Ordering Subgoals with Access Constraints
[Extended Abstract]

Guizhen Yang
Artificial Intelligence Center

SRI International
Menlo Park, CA 94025, USA

Michael Kifer
Dept. of Computer Science

Stony Brook University
Stony Brook, NY 11794, USA

Vinay K. Chaudhri
Artificial Intelligence Center

SRI International
Menlo Park, CA 94025, USA

ABSTRACT
In this paper, we study the problem of ordering subgoals
under binding pattern restrictions for queries posed as non-
recursive Datalog programs. We prove that despite their
limited expressive power, the problem is computationally
hard — PSPACE-complete in the size of the nonrecursive
Datalog program even for fairly restricted cases. As a prac-
tical solution to this problem, we develop an asymptotically
optimal algorithm that runs in time linear in the size of the
query plan. We also study extensions of our algorithm that
efficiently solve other query planning problems under bind-
ing pattern restrictions. These problems include conjunc-
tive queries with nested grouping constraints, distributed
conjunctive queries, and first-order queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing ; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
query, nonrecursive Datalog, binding pattern, executability

1. INTRODUCTION
Ordering subgoals under binding pattern restrictions is an

important problem of practical significance in information
integration and query answering systems [9, 6, 8, 17, 7, 10].
Often binding pattern restrictions are used to define the ac-
cess constraints associated with information sources. More
specifically, these restrictions specify which arguments of a
subgoal must be bound to concrete values in order for it
to be evaluable. Therefore, query answering under binding
pattern restrictions amounts to finding an executable query
plan — a particular order of the subgoals needed to answer
a given query — such that the access constraints associated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00.

with each subgoal will be satisfied if evaluation of these sub-
goals is carried out in the specified order.

The need for binding pattern restrictions arises in a num-
ber of situations. Query interfaces on the Web that are
based on HTML forms typically require that certain fields
be filled in before the query can be dispatched to the back-
end data source [6, 8, 18, 17]. Thus queries involving joins
over multiple such data sources must be evaluated in a man-
ner that respects their binding pattern restrictions. In tra-
ditional query optimization, some attributes in a relation
may have efficient indexes or be more selective. These sets
of attributes can be viewed as binding pattern restrictions,
and arranging joins so that these restrictions are satisfied
is a good query planning heuristic. In deductive databases
and knowledge base systems, some predicates naturally have
binding pattern restrictions because their underlying rela-
tions are infinite (e.g., the ≥ relation) or because these pred-
icates are builtins, which are implemented via foreign pro-
cedures that require certain arguments to be bound (e.g., a
builtin that checks if a file is writable would normally require
the name of the file be given).

In this paper, we study the problem of finding executable
query plans for queries posed as nonrecursive Datalog pro-
grams under binding pattern restrictions. We prove that
the associated decision problem is PSPACE-complete in the
size of the nonrecursive Datalog program even for fairly re-
stricted cases. Moreover, it is #P-complete to count all
the (minimal) binding patterns permissible for conjunctive
queries under binding pattern restrictions, thereby providing
a complexity-theoretic explanation for the exponential-time
algorithm proposed in [18].

Then we proceed to develop what can be viewed as an
asymptotically optimal query planning algorithm — an al-
gorithm that runs in time linear in the size of the query
plan and thus possesses the desirable properties of output
polynomial algorithms [12]. To clarify a seeming contradic-
tion between this claim and our earlier statement regarding
the complexity of the problem, we note that the size of a
query plan may be exponential relative to the underlying
Datalog program (the proof of Theorem 4 contains such an
example). Therefore, although our algorithm runs in time
linear in the size of the query plan, its time complexity may
still be exponential in the size of the Datalog program.

We also investigate several extensions of our algorithm
that efficiently solve other query planning problems under
binding pattern restrictions. The first extension is for con-
junctive queries with grouping constraints, which require
that certain groups of subgoals be dispatched together to

one source for evaluation. Query evaluation using views is
one instance in which grouping constraints are useful [13, 6].
Such constraints also often arise in integration of heteroge-
neous knowledge and reasoning systems [2, 1]. We show how
to adapt our algorithm to handle grouping constraints, al-
beit the algorithm now runs in time quadratic in the size of
the query. The second extension is for conjunctive queries
over horizontally partitioned distributed databases [14]. The
main problem here is to decide if a query is partially or fully
executable, especially when different sources may impose
different binding pattern restrictions for the same predicate.
We show that both problems can be solved efficiently using
our algorithm. However, when a query is not fully but only
partially executable, it becomes #P-complete to count the
number of executable subquery plans. Finally, we show how
to extend our algorithm to handle nonrecursive Datalog pro-
grams with safe negation without loss of runtime efficiency.
Since first-order queries can be translated into nonrecur-
sive Datalog programs with safe negation [5], we solve the
open problem of executability (called orderability in [10]) of
first-order queries under binding pattern restrictions.

2. PRELIMINARIES
Here we introduce the basic concepts and notations that

will be used throughout the paper.

2.1 Rules and Binding Patterns
Let p be an n-ary predicate. We will say p(X1, . . . , Xn)

is a goal or a subgoal of predicate p, where each Xi is a
variable or a constant. A Datalog program is a finite set of
Horn rules without function symbols. Following the stan-
dard convention, we will write a rule as follows:

h(X) :− g1(X1), . . . , gk(Xk)

in which h and g1, . . . , gk are predicate symbols, and X,
X1, . . . , Xk represent lists of arguments. We will say that
predicate h is defined by this rule, and call h(X) the head
of the rule, and the conjunction of literals (separated by
commas), g1(X1), . . . , gk(Xk), the body of the rule. We will
refer to each gi(Xi) as a subgoal in the rule.1 In this paper
we assume that all rules are safe, i.e., all variables appearing
in the head of the rule also appear in some subgoal in the
rule body.

In a Datalog program we distinguish between two kinds of
predicates: intensional predicates, i.e., those predicates that
are defined by rules, and extensional predicates — predicates
that do not appear in the head of any rule. Without loss of
generality, we will assume that the sets of intensional and
extensional predicates in a Datalog program are disjoint.

Given a Datalog program, we can construct a dependency
graph as follows. There is a node in the graph for each pred-
icate in the program. If predicate p is defined by a rule in
which a subgoal of predicate q appears, then draw an edge
from q to p. A Datalog program is called recursive if its
dependency graph contains cycles, and called nonrecursive
otherwise. Note that in this paper we consider only nonre-
cursive Datalog programs.

We use binding patterns to specify which arguments of a
goal are bound, i.e., have a constant value. Furthermore, we

1Frequently we will use the terms “goal” and “subgoal” in-
terchangeably.

consider binding patterns in the context of a set of variables
whose bindings (values) are presumed to be available.

Definition 1 (Binding Patterns) Let S be a set of vari-
ables and g a goal of an n-ary predicate. The binding pattern
for g in the context of S, denoted ΓS(g), is a string of length
n consisting of b’s and f ’s. The i-th symbol of ΓS(g) is b
if the i-th argument of g is a constant, or a variable that
belongs to S; otherwise, the i-th symbol is f . Without a
context, the native binding pattern for g, denoted Γ(g), is

defined as Γ(g)
def
= Γ∅(g).

We assign to each extensional predicate a set of feasible
binding patterns. More than one feasible binding pattern
can be associated with any predicate. We will say that a
subgoal, g, of an extensional predicate, p, is executable, if its
native binding pattern, Γ(g), is feasible for p. We will also
say that g is executable in the context of S, if the binding
pattern of g in the context of S, ΓS(g), is feasible for p.

Example 1 Suppose the ternary predicate, salary , has only
one feasible binding pattern, bbf . Then salary(tom, Y, S) is
not executable, since Γ(salary(tom, Y, S)) = bff 6= bbf .2

This binding pattern restriction implies that we can retrieve
the salary information of an employee in a year, provided
that this employee and the year are both known. However,
salary(tom, Y, S) becomes executable in the context of {Y },
since Γ{Y }(salary(tom, Y, S)) = bbf . 2

Since intensional predicates are defined over extensional
predicates using rules, feasibility of binding patterns for in-
tensional predicates can be inferred given the feasibility of
binding patterns for extensional predicates.

Example 2 Consider the following rule:

p(X, Z) :− s(X, Y), t(Z, Y)

and the feasible binding patterns, bf and fb, for extensional
predicates s and t, respectively. The binding pattern bf is
feasible for predicate p, since we can use bindings for variable
X and evaluate s(X, Y) first, obtain bindings for variable Y ,
and then evaluate t(Z, Y). However, it can be verified that
the binding pattern fb is not feasible, since we cannot find an
order to execute the subgoals in the rule body that observes
their binding pattern restrictions. 2

Since feasibility of binding patterns implies executability
of subgoals, we need the notion of executable query plans,
which we will introduce next.

2.2 Query Plans and Executability
A query plan describes how rules are expanded for sub-

goals and the order in which subgoals are executed in the
expanded rules. For ease of exposition, here we will make
the simplifying assumption that the head of a rule does not
have duplicate variables in different argument positions.3

Let r be a rule, p(Y) :− q1(Y1), . . . , qk(Yk), and p(X) a
goal. We assume that r and p(X) do not share variables,

2Following the standard convention we will use uppercase
letters for variables and lowercase for constants.
3Any Datalog program can be easily transformed to meet
this assumption without affecting the complexity of our al-
gorithms asymptotically.

i.e., rules have only local variables. Let θ be a substitution
that renames the variables in p(Y) such that p(Y)θ = p(X),
where p(Y)θ denotes the result of applying θ to p(Y). Then
the expansion of r with respect to p(X) is the collection of
subgoals q1(Y1)θ, . . . , qk(Yk)θ.

In the case of nonrecursive Datalog programs, we can rep-
resent a query plan for a goal or a set (conjunction) of goals
using an ordered tree-like data structure.4 Each node in
the tree contains a list of subgoals. The root node contains
the original goal or set of goals (which may have been re-
ordered). If the predicate of a subgoal g in a node N is
defined by rules r1, . . . , rm, then there is a link from g to
each node N1, . . . , Nm, where Nj , 1 ≤ j ≤ m, contains the
list of subgoals (which may have been reordered) in the ex-
pansion of rj with respect to gi. We will call g the parent
subgoal and N the parent node of each node Nj , and Nj a
child node of g and N . Each subtree rooted at Nj is called
a subplan of g. Each node in the subtree rooted at Nj is
called a descendant node of g and N .

q(Y,Y)

p(X,Y)

u(X,Y) v(X,Y)t(Y,Y)s(Y,Y) w(X,Y)t(X,X)

r(X,Y)

w(X,Y)

p(X,Y)

t(Y,Y)s(Y,Y)

r(X,Y) q(Y,Y)

u(X,Y) v(X,Y) t(X,X)

(a) (b)

Figure 1: Two Query Plans for Example 3

Note that all the query plans for a goal share the same rule
expansion structure, but may differ in the order of subgoals.
When we speak of an unordered query plan, we are mainly
concerned with subgoals in rule expansions instead of their
orderings.

Example 3 Consider the following nonrecursive Datalog
program:

p(X, Y) :− q(Y, Y), r(X, Y) r(X, Y) :− u(X, Y), v(X, Y)
q(X, Y) :− s(X, Y), t(X, Y) r(X, Y) :− t(X, X), w(X, Y)

in which predicates s, t, u, v, w are extensional. Figure 1
shows two example query plans for goal p(X, Y). These
two plans have the same rule expansion structure, i.e., are
isomorphic when the order of subgoals in each node is not
important. But the order of subgoals is different in the rule
expansion for p(X, Y), and in the rule expansion for r(X, Y),
which is obtained using the second rule above defining pred-
icate r. Note that subgoal r(X, Y) has two subplans. Each
subplan corresponds to one rule expansion. 2

A query plan is executed top-down (like SLD resolution):
(i) the list of subgoals in a node are executed from left to
right; (ii) executing an extensional subgoal produces bind-
ings for all the variables in it; (iii) executing an intensional
subgoal requires executing all of its subplans (rule expan-
sions) in the same top-down fashion; and (iv) bindings
obtained for variables as a result of execution are used to
instantiate the same variables in succeeding subgoals.

It is essential that during the top-down execution of a
query plan every extensional subgoal be executable given the
set of variables that are already bound prior to its execution.
In the following, we formally define this set of bound vari-
ables based on the evaluation model just described above.
4The query plans described here can be viewed as a compact
representation of the rule/goal graphs in [15].

Definition 2 (Contexts) Given a query plan T and a set
of variables S, let g be a subgoal in a node N of T . The
context of g in T with respect to S, denoted ΦT,S(g), is
defined inductively as follows:

ΦT,S(g)
def
= {X |X ∈ varArgs(q), q ∈ prec(g)} ∪ ∆

where varArgs(q) denotes the set of variable arguments of
subgoal q, and prec(g) denotes the set of subgoals that are
ordered before g in the same node N . Moreover, ∆ = S if
g resides in the root node; otherwise, ∆ = ΦT,S(p), where p

is the parent subgoal of node N .

Note that contexts are defined for occurrences of subgoals
in a query plan. When we mention a subgoal in a query plan,
we are actually referring to the occurrence of the subgoal
that resides in a particular node of a query plan. We now
formalize the notion of executable query plans as follows.

Definition 3 (Executability) Let T be a query plan and
S a set of variables. We will call T an executable query plan
in the context of S, if every extensional subgoal g in T is
executable in the context of ΦT,S(g). We will say that a goal
g is executable in the context of S, if there is a query plan
for g that is executable in the context of S.

We can also extend the notion of executability to a set of
subgoals. A set (conjunction) of subgoals G is executable in
the context of S, if there is an executable query plan T for
the subgoals in G in the context of S. Note that the root
node of T should contain an order of the subgoals in G. We
will call this order a feasible order of the subgoals in G in
the context of S. Finally, we define the notion of feasible
binding patterns for intensional predicates as follows.

Definition 4 (Feasible Binding Patterns) Let p be an
n-ary intensional predicate and α a binding pattern of length
n. We will say that α is a feasible binding pattern for p, if
there is an executable query plan for goal p(X1, . . . , Xn)
in the context of S, where Xi’s are distinct variables, and
S = {Xi | the i-th symbol of α is b}.

2.3 The Bound-is-Easier Assumption
We can define a partial order, �, among the (feasible)

binding patterns5 of a predicate. Let α and β be two binding
patterns of the same predicate. We will write α � β, if
whenever there is a b in α, the corresponding position in β

also has a b. For instance, bbf � bbb.
Throughout this paper we will make an important as-

sumption, called bound-is-easier [9, 16], about binding pat-
terns: if α is a feasible binding pattern for a predicate and
α � β, then β is also a feasible binding pattern for this
same predicate. It can be shown that if the bound-is-easier
assumption holds for all extensional predicates, then it also
holds for all intensional predicates. Therefore, for any goal
g, if g is executable in the context of S1 and S1 ⊆ S2, then
g is also executable in the context of S2.

We will say that α is a minimal feasible binding pattern
for a predicate, if there is no other feasible binding pattern
β for this same predicate, such that β � α. Clearly, to
enumerate all the feasible binding patterns of a predicate, it
suffices to enumerate all the minimal ones.

5Sometimes we will omit the word “feasible” while referring
to feasible binding patterns.

3. COMPLEXITY RESULTS
Here we consider the computational complexity of decid-

ing whether a goal defined by a nonrecursive Datalog pro-
gram is executable in a context (the executability problem).
Closely related to this is the problem of deciding whether a
binding pattern is feasible for an intensional predicate (the
feasibility problem). Since feasibility of binding patterns
can be defined in terms of executability of subgoals in par-
ticular contexts (see Definition 4), the feasibility problem is
essentially equivalent to the executability problem. First we
will present a polynomial-space algorithm that is directly
targeted at solving the more generic executability problem.

3.1 A Polynomial-Space Algorithm
Algorithm exec↓ (p, S) (shown in Figure 2) checks if there

is an executable query plan for p in the context of S. When
p is an extensional subgoal, the subroutine, executable(p, S),
on Line 16 is used to test whether p is executable in the con-
text of S. The subroutine, expand(p, r), on Line 3 computes
the rule expansion, E, of r with respect to p.

Algorithm exec↓ (p, S)
input

p: a goal
S: a set of variables which are already bound

begin

1. if p is an intensional subgoal then

2. for each rule r defining the predicate of p do

3. E = expand(p, r)
4. S′ = S

5. while E 6= ∅ do

6. if ∃q ∈ E such that exec↓ (q, S′) == true then

7. S′ = S′ ∪ {all variables in q}
8. E = E − {q}
9. else

10. return false
11. endif

12. endwhile

13. endfor

14. return true
15. else

16. return executable(p, S)
end

Figure 2: A Polynomial-Space Algorithm for Solving
the Executability Problem

Note that algorithm exec↓ is essentially constructed based
on how executability of query plans is defined in Definition 3.
To see why algorithm exec↓ works correctly, we need to ex-
ploit an important property of the bound-is-easier assump-
tion, which is formally stated in the following theorem.

Theorem 1 ([15]) Let G = {g1, . . . , gn} be a set of sub-
goals and S a set of variables. Suppose 1 ≤ k ≤ n, and each
subgoal gi, 1 ≤ i ≤ k, is executable in the context of Si,

where S1 = S, and Si
def
= Si−1 ∪ {all variables in gi−1} for

2 ≤ i ≤ k. Then there is a feasible order of the subgoals
in G in the context of S, iff there is a feasible order of the
subgoals in G in the context of S that starts with g1, . . . , gk.

The correctness of algorithm exec↓ can be established us-
ing Theorem 1 in the following proposition.

Proposition 2 Let p be a goal and S a set of variables.
Algorithm exec↓ (p, S) returns true iff there is an executable
query plan for p in the context of S.

To analyze the space complexity of algorithm exec↓, let
n be the size of the Datalog program. First note that the
number of pending calls to algorithm exec↓ is O(n). The set,
E, of subgoals (Line 3 in Figure 2) in each rule expansion
takes space O(n). During each iteration of the while-loop
(Lines 5-12 in Figure 2), at most k number of new members
may be added to the set, S′, of bound variables (Line 7 in
Figure 2), where k is the size of the rule currently being
expanded in the call. Since the Datalog program is nonre-
cursive, it follows that inside each call S′ takes space O(n).
Therefore, algorithm exec↓ takes space O(n2).

We summarize the discussions above in the following claim.

Proposition 3 The executability problem is in PSPACE
for nonrecursive Datalog programs.

3.2 Computational Complexity
Here we formally prove that the executability problem

is PSPACE-complete for nonrecursive Datalog programs.
Note that the claims here use the bound-is-easier assump-
tion. Without this assumption, we can still prove the com-
plexity results here using techniques similar to those in [16],
except that each extensional predicate may be allowed to
have two different feasible binding patterns.

Theorem 4 For nonrecursive Datalog programs, the exe-
cutability problem is PSPACE-complete. This complexity
result still holds even if every intensional predicate is de-
fined by only one rule, every extensional predicate has only
one associated minimal binding pattern, and there are at
most two subgoals of the same predicate in a rule.

Corollary 5 The feasibility problem is PSPACE-complete
for nonrecursive Datalog programs.

We should point out, however, that the feasibility problem
can be solved efficiently for intensional predicates that are
defined using extensional predicates only (see Section 4 and
Corollary 13). Therefore, an interesting problem one may
contend with is that of computing the set of feasible binding
patterns for intensional predicates, e.g., using techniques like
those proposed in [18]. Such computation requires enumer-
ating all feasible binding patterns. The following theorem
states that this enumeration problem is also computation-
ally difficult.

Theorem 6 The problem of counting the number of (min-
imal) feasible binding patterns for a conjunctive query is
#P-complete. This complexity result still holds even if there
is no repeated predicate in the query and every predicate in
the query has only one associated minimal binding pattern.

Therefore, as far as only one feasibility test is concerned,
precomputation of feasible binding patterns offers no com-
putational advantages. We do note, however, that the pre-
computation approach may be well suited for applications in
which a large number of feasibility tests need to be repeated.
Although one may argue that the set of feasible binding pat-
terns can be effectively computed by caching the results of
single feasibility tests, our focus here is on how to perform
single feasibility tests efficiently (see Section 5 for use cases).

parentGoal(N) the parent subgoal of node N

goalCount(N) the number of subgoals that remain to be ordered in node N

orderedList(N) the ordered list of subgoals that are already ordered in node N

node(g) the node to which subgoal g belongs
ruleCount(g) the number of rule expansions that remain to be ordered for subgoal g

varArgs(g) the set of variable arguments of subgoal g

boundVars(g) the set of variables arguments already bound in subgoal g

isOrdered(g) whether subgoal g has been ordered
goalList(X, N) the list of subgoals having variable X as an argument in node N

isBound(X, N) whether variable X is already bound in node N

isPassed(X, N) whether the binding of variable X has been propagated in the subplan rooted at node N

ok whether an executable query plan has been found
V a list of variable-node pairs, (X, N), meaning variable X is already bound in node N

G a list of already ordered subgoals

Figure 3: Summary of Notations and Data Structures

4. IMPROVING TIME EFFICIENCY
Theorem 4 essentially implies it is very unlikely that the

executability problem can be solved in time polynomial in
the size of the Datalog program. There is a catch, however.
Note that executability test basically reduces to verifying if
an executable query plan exists. Therefore, a natural ques-
tion we may ask is: Can the executability problem be solved
efficiently in terms of the size of the query plan?

The answer is “Yes”. But observe that algorithm exec↓
tests executability of subgoals in the query plan top-down.
In the worst case its running time can be exponential in the
size of the query plan. Therefore, the main purpose here is to
improve the worst-case time bound of algorithm exec↓. We
will develop a new algorithm that solves the executability
problem in time linear in the size of the query plan.

4.1 A Linear-Time Algorithm
Our new algorithm, named exec↑, is shown in Figure 4.

The notations used in the algorithm and its subroutines are
explained in Figure 3, where we have also briefly described
the data structure that each notation represents.

Algorithm exec↑ (p, S)
input

p: a subgoal
S: a set of variables which are already bound

begin

1. construct an unordered query plan T for subgoal p

2. V = G = ∅
3. R = the root node of T

4. initialize(R,G)
5. for each variable X ∈ S do

6. isBound(X, R) = true
7. add (X, R) to V
8. endfor

9. while V 6= ∅ or G 6= ∅ do

10. while G 6= ∅ do

11. select and remove a subgoal q from G
12. resolve(q,V)
13. endwhile

14. while V 6= ∅ do

15. select and remove a variable-node pair (X, N) from V
16. bind(X, N,G)
17. endwhile

18. endwhile

19. return goalCount(R) == 0
end

Figure 4: A Linear-Time Algorithm for Solving the
Executability Problem

The key idea underlying algorithm exec↑ is to order sub-
goals in the query plan bottom-up and propagate bindings
of variables top-down. It is essentially a greedy algorithm,

utilizing the bound-is-easier assumption. Algorithm exec↑
consists of three stages: (i) construction of an unordered
query plan (refer to Section 2.2 for the definition) for the
given goal (Line 1 in Figure 4); (ii) initialization of data
structures (Lines 2-8 in Figure 4); and (iii) search for a fea-
sible order of subgoals in the query plan (Lines 9-18 in Fig-
ure 4). In the first stage, we simply perform rule expansions
and construct an unordered query plan for the given goal.
Clearly, the following data structures can be constructed
during the construction of the initial query plan. For each
node N in the plan: (i) parentGoal(N) is set to the parent
subgoal of N ; and (ii) goalCount(N) is set to the number of
subgoals in N . For each subgoal g in the plan: (i) node(g)
is set to the node where g resides; (ii) ruleCount(g) is set
to the number of rules expanded for g; and (iii) varArgs(g)
is initialized to the set of variable arguments of g.

Procedure initialize(N,G)
input

N : a node in a query plan
G: a list for storing subgoals

begin

1. orderedList(N) = ∅
2. for each subgoal q ∈ N do

3. boundVars(q) = ∅
4. isOrdered(q) = false
5. for each variable X ∈ varArgs(q) do

6. isBound(X, N) = isPassed(X, N) = false
7. add q to goalList(X, N)
8. endfor

9. if q is an extensional subgoal and executable(q, ∅) then

10. isOrdered(q) = true
11. add q to both orderedList(N) and G
12. endif

13. for each child node C of q do initialize(C,G) endfor

14. endfor

end

Figure 5: Initializing an Unordered Query Plan

In the initialization stage,6 a main step (Line 4 in Figure 4)
is to traverse the initial query plan top-down and build ad-
ditional data structures needed in the following search stage
(see Figure 5). For each node N in the plan, orderedList(N),
the list of already ordered subgoals in N , is initialized to
empty (Line 1). For each subgoal g in the query plan:
(i) boundVars(g), the list of variables already bound in g,
is initialized to empty (Line 3); (ii) isOrdered(g), indi-
cating whether g has been ordered, is initialized to false

6For ease of exposition, we have separated out the initial-
ization stage. In fact, the data structures built in this stage
can be constructed together with the initial query plan.

(Line 4); and (iii) g is added to goalList(X), the list of sub-
goals in which variable X appears as an argument (Line 7).
For each variable X appearing in a subgoal in node N :
(i) isBound(X, N), indicating if variable X is already bound
in N , is initialized to false (Line 6); and (ii) isPassed(X, N),
indicating whether the binding of variable X has been prop-
agated in the subplan rooted at N , is initialized to false
(Line 6).

Procedure bind(X, N,G)
input

X: a variable
N : a node
G: a list for storing subgoals

begin

1. if isPassed(X, N) then return endif

2. isBound(X, N) = isPassed(X, N) = true
3. for each subgoal q ∈ goalList(X, N) s.t. not isOrdered(q) do

4. if q is an intensional subgoal then

5. for each child node C of q do bind(X, C,G) endfor

6. else

7. add X to boundVars(q)
8. if executable(q, boundVars(q)) then

9. isOrdered(q) = true
10. add q to both orderedList(N) and G
11. endif

12. endif

13. endfor

end

Figure 6: Propagating Bindings of Bound Variables

Moreover, we also check, for each extensional subgoal g in
node N , if it is executable without any variables to be bound
(Line 9). If so, then g is immediately ordered and added to
two lists, orderedList(N) and G (Lines 10-11). Finally, note
that in Figure 4, the input, S, to algorithm exec↑ is a set of
variables that are presumed to be already bound. So for all
variable X ∈ S, Lines 5-8 in Figure 4 add a variable-node
pair, (X, R), where R is the root node of the query plan, to
the list V.

Procedure resolve(q,V)
input

q: a subgoal
V: a list for storing variable-node pairs

begin

1. N = node(q)
2. for each variable X ∈ varArgs(q) s.t. not isBound(X, N) do

3. isBound(X, N) = true
4. add (X, N) to V
5. endfor

6. goalCount(N) = goalCount(N) − 1
7. if goalCount(N) == 0 and N is not the root node then

8. g = parentGoal(N)
9. ruleCount(g) = ruleCount(g) − 1
10. if ruleCount(g) == 0 then

11. isOrdered(g) = true
12. add g to both orderedList(node(g)) and G
13. endif

14. endif

end

Figure 7: Resolving Ordered Subgoals

The search stage (Lines 9-18 in Figure 4) consists mainly
of two interacting subroutines: bind(X, N,G) (Figure 6) and
resolve(q,V) (Figure 7). The key idea underlying our search
algorithm is based on the following observations. First, once
a variable of a subgoal is bound in a node, its binding can

be propagated throughout the subplan rooted at that node.
Second, once a subgoal becomes executable and is ordered,
bindings can be obtained for all of its variable arguments.
Third, the bound-is-easier assumption eliminates the need
to reorder a subgoal once it has been ordered. Note that
the intended use of G is to store a list of newly ordered
subgoals. We use V to store a list of variable-node pairs.
Each (X, N) ∈ V means variable X is bound in node N .

The main functionality of procedure bind(X, N,G) (see
Figure 6) is to propagate the binding of variable X in the
subplan rooted at node N . For each unordered extensional
subgoal q ∈ goalList(X, N), it checks if q becomes exe-
cutable with the addition of X to the set of variable ar-
guments of q that are already bound (Lines 7-8). If so, then
q is immediately ordered and added to orderedList(N) and G
(Lines 10-11). Moreover, the binding of X is propagated fur-
ther down by calling bind(X, C,G) recursively for each child
node C of each unordered, intensional subgoal (Line 5).

Procedure resolve(q,V) (see Figure 7) takes a subgoal q as
input, which has been ordered and known to be executable.
It first adds to V a variable-node pair, (X, N), where N

is the node in which q resides, for every unbound variable
argument X of q (Lines 2-5). The counter, goalCount(N),
on Line 6 keeps track of how many subgoals in N remain
to be ordered. It is first decremented to account for the
ordering of q. When its value is zero, it means a feasible
order has been found for all subgoals in N . Lines 7-14 handle
the case in which goalCount(N) is zero and N is not the root
node. Now N represents a subplan for its parent subgoal g

(Line 11). We use the counter, ruleCount(g), on Line 9 to
keep track of how many subplans of g remain to be ordered.
It is first decremented since a feasible order has been found
for N . If its value is zero, it means that all subplans of g are
executable. In this case, since g now becomes executable,
we order it immediately and add it to orderedList(node(g))
and G (Lines 11-12).

4.2 Correctness and Complexity Analysis
To establish the correctness of algorithm exec↑, first ob-

serve that a variable-node pair (X, N) is added to V only
if isBound(X, N) equals false. Moreover, whenever (X, N)
is added to V, isBound(X, N) is set to true. Therefore, a
variable-node pair is added to V at most once. Analogously,
a subgoal is added to G at most once. Since every iteration
of the outer while-loop on Lines 9-18 in Figure 4 must re-
move at least one element from either G or V, it follows that
algorithm exec↑ must terminate in a finite number of steps.

Theorem 7 Algorithm exec↑ (p, S) returns true iff an exe-
cutable query plan exists for p in the context of S.

Corollary 8 An executable query plan for p in the context
of S is computed when algorithm exec↑ (p, S) returns true.

To analyze the running time of algorithm exec↑, for now
let us assume that the executability test, executable(g, S),
where g is an extensional subgoal g and S a set of variables,
takes time λ. Let s be the size of the query plan, which is
roughly the number of predicate symbols and arguments of
all subgoals in the query plan. Clearly, construction of the
unordered query plan takes time O(s), and the initialization
stage takes time O(λ · s). So the cost of executing Lines 1-8
of algorithm exec↑ is O(λ · s).

The cost of executing the while-loop on Lines 9-18 of
algorithm exec ↑ consists of two parts: the time taken to
execute procedure resolve(q,V) (Line 12 in Figure 4) for
a subgoal q removed from G, and the time taken to exe-
cute procedure bind(X, N,G) (Line 16 in Figure 4) for a
variable-node pair (X, N) removed from V. It can be easily
verified that each call to procedure resolve(q,V) takes time
proportional to the size of q. Since any subgoal can be added
to G at most once, it follows that the accumulative cost of
executing Line 12 of algorithm exec↑ is O(s).

Note that procedure bind(X, N,G) may be called only
in two cases: either due to the removal of (X, N) from V
(Line 12 in Figure 4), or as a result of a recursive call to
procedure bind itself (Line 5 in Figure 6). However, each
variable-node pair (X, N), where variable X appears as a
variable argument in a subgoal in node N , is added to G at
most once. The use of passed(X, N) on Lines 1-2 of proce-
dure bind makes it impossible to invoke bind(X, N,G) recur-
sively from two different ancestor nodes of N . Therefore, for
each variable-node pair (X, N), the number of calls made to
bind(X, N,G) can be no more than two. Clearly, Lines 2-13
of procedure bind(X, N,G) may be executed in only one call
to bind(X, N,G); the other call simply returns on Line 1 of
the procedure. Let us split the cost of executing all calls
to procedure bind into two parts: ε and ω. For each call
to bind(X, N,G): (i) if only Line 1 of the procedure was
executed, then we add its cost to ε; (ii) if Lines 2-13 of
the procedure were executed, we add its cost to ω, except
the cost of executing the for-loop on Line 5 of the proce-
dure — this cost will be tallied separately under the tag of
bind(X, C,G). Clearly, ε = O(k), where k is the number of
variable-node pairs, and ω = O(λ · s). But k = O(s). It
follows that the accumulative cost of executing Line 16 of
algorithm exec↑ is O(λ · s).

The following theorem summarizes our discussion above
about the time complexity of algorithm exec↑.

Theorem 9 Algorithm exec ↑ takes time O(λ · s), where
λ is the cost of testing the executability of an extensional
subgoal in a given context, and s is the size of the query
plan.

The complexity result in Theorem 9 can be interpreted
as stating that the number of executability tests is linear in
the size of the query plan. Alternatively, we can view λ as
representing the cost of executability tests averaged over all
extensional subgoals in the query plan. Now let us consider
how to manage executability tests efficiently for extensional
subgoals.

If the arity of each extensional predicate is small, say,
bounded by the length of a machine word, then we can use
bitmaps to encode the feasible binding patterns of an exten-
sional predicate as follows: the i-th bit is set to 1 if the i-th
argument needs to be bound; otherwise, it is set to 0. On
the other hand, the binding pattern of a subgoal is encoded
as follows: we set the i-th bit to 0 if the i-th argument is
bound, and to 1 otherwise.

Given a subgoal g of an extensional predicate p and a
set of variables S, let w be the binding pattern of g in the
context of S, and w1, . . . , wk the feasible binding patterns
of p that are encoded as bitmaps using the method just
described above. Clearly, g is executable in the context of
S iff there is wi, 1 ≤ i ≤ k, such that the bit-wise AND

of w and wi equals zero. Therefore, we can precompute
the bitmap representations of feasible binding patterns for
all extensional predicates, and allocate a machine word for
each extensional subgoal to store the bitmap representation
of its current binding pattern. Whenever a variable becomes
bound (i.e., Line 7 in Figure 6 is executed), we can update
the bitmaps accordingly. This step involves retrieving the
argument position of a variable in a subgoal (say, using Hash
methods) and setting the appropriate bit to 0 (the AND
of two machine words). Both operations can be done in
constant time. It follows that the executability test for an
extensional subgoal can be done in time O(k).

If the arity of each extensional predicate is not bounded
by the length of a machine word, however, then we can use
a different approach to testing executability of extensional
subgoals. Let g be a subgoal of an extensional predicate
p, S a set of variables, and α1, . . . , αk the feasible binding
patterns for p. We will view each αi as a set of integers
specifying which arguments must be bound. Therefore, we
can allocate k counters, c1, . . . , ck, to g, each initialized to
the number of arguments that remain to be bound as speci-
fied by α1, . . . , αk, respectively. Whenever a variable X ∈ S

becomes bound (i.e., Line 7 in Figure 6 is executed), we
first obtain the argument position, n, of X in g. Then we
decrement each ci if n ∈ αi. Clearly, g is executable in
the context of S iff some ci ever becomes zero. Assuming
set membership tests can done in constant time using Hash
methods, we can conclude that the executability test for an
extensional subgoal also takes time O(k) even if the arity of
each extensional predicate is not bounded.7

Summarizing the discussion above, we have the following
corollary.

Corollary 10 If the number of feasible binding patterns for
each extensional predicate is bounded by a constant, then
the executability problem can be solved in time linear in the
size of the query plan. The same complexity result holds
even if an executable query plan needs to be output when
the executability test succeeds.

5. EXTENSIONS
Here we study several different query planning problems

that are mainly concerned with ordering subgoals to satisfy
binding pattern restrictions. We will show how to extend the
algorithms and complexity results developed in Section 4
to these problems. Note that when stating the complex-
ity results in this section, we will implicitly assume that
the number of feasible binding patterns for each extensional
predicate is bounded. Moreover, for ease of exposition, we
will assume that all queries to be considered here contain
extensional subgoals only, although our results can be easily
extended accordingly to accommodate intensional subgoals.

5.1 Grouping Constraints
A conjunctive query with grouping constraints is like a

conventional conjunctive query except that each component
in the query may be a group of subgoals. As a syntactic
sugar, we will annotate a group of subgoals using a pair of
square brackets. For instance, in the query, q1∧ [q2∧q3]∧q4,
the two subgoals, q2 and q3, belong to one group. Clearly,

7Strictly speaking, we still assume that a machine word is
big enough to store the number of arguments in a subgoal.

the case of conjunctive queries with grouping constraints
subsumes the case of conventional conjunctive queries. In
the latter case, each subgoal can be viewed as belonging to
a singleton group (we simply omit the square brackets for
singleton groups). Grouping constraints impose restrictions
on how subgoals can be ordered — all the subgoals in the
same group must remain together. Therefore, given a query,
q1∧ [q2∧q3∧q4]∧q5, a feasible order (to be formalized next)
could be q1∧q5∧ [q2∧q4∧q3]; however, q1∧ [q2∧q4]∧q5∧q3

is not valid, since it breaks the grouping constraint.
We allow grouping constraints to have nested structures,

i.e., a group of subgoals can be included as a whole in
another group. Thus, we define a conjunctive query with
grouping constraints (CQG) inductively as follows: (i) if q

is a subgoal, then [q] is a CQG; (ii) if g1, . . . , gn, n ≥ 2, are
CQGs, so is [g1 ∧ . . . ∧ gn]. Note that in our formalization,
each subgoal belongs to a singleton group. We normally
assume that the groups of subgoals in a CQG are ordered.

We can also define an isomorphism between CQGs in-
ductively based on their nested structures. Let Q1 and
Q2 be two CQGs. We will say that Q1 is isomorphic to
Q2, if: (i) Q1 = [q] and Q2 = [q], where q is a subgoal;
or (ii) Q1 = [p1 ∧ . . . ∧ pn], Q2 = [q1 ∧ . . . ∧ qn], and there
is a permutation, π, of 1, . . . , n, such that pi is isomorphic
to qπ(i), for all 1 ≤ i ≤ n. That is, Q1 has exactly the same
grouping of subgoals as Q2, but the ordering of groups in
Q1 may be different from Q2.

Given a CQG Q, let flat(Q) denote the ordered list of
subgoals in Q, i.e., flat(Q) is obtained from Q by simply
removing its grouping constraints (square brackets). Let S

be a set of variables. We will say that Q is executable in the
context of S, if there is a CQG P such that P is isomorphic
to Q, and flat(P) is a feasible order of the subgoals in Q in
the context of S (recall Definition 3 in Section 2.2).

Procedure gen(Q,PQ)
input

Q: a CQG
PQ: the Datalog program to be generated from Q

begin

1. if Q contains only one subgoal g then return g

2. let Q = [q1 ∧ . . . ∧ qn]
3. for each qi, 1 ≤ i ≤ n do gi = gen(qi,PQ)
4. generate a new predicate symbol p

5. let hQ = p(X), where X is the list of variables appearing in Q

6. add to PQ the following rule: hQ :− g1, . . . gn

7. return hQ

Figure 8: Generating Datalog Programs from CQGs

The main problem we want to solve here is deciding exe-
cutability of CQGs. First, given a CQG Q, we will generate
a Datalog program, PQ, from Q using the simple procedure
shown in Figure 8. Essentially, procedure gen(Q,PQ) pro-
duces a rule for each group of subgoals in Q, and uses the
heads of these rules as subgoals in rule bodies accordingly.
Note that gen(Q,PQ) also returns hQ, the head of the rule
finally produced for Q. Let S be a set of variables. It can
be easily verified that Q is executable in the context of S, iff
hQ defined by the Datalog program PQ is executable in the
context of S. Therefore, we can use procedure gen and al-
gorithm exec↑ to solve the executability problem for CQGs.

Note that the Datalog program generated by procedure
gen is in a special form — what we call singular Datalog
programs.

Definition 5 (Singular Datalog Programs) We will say
that a (nonrecursive) Datalog program P is singular, if for
all intensional predicate p in P, there is at most one subgoal
of p that appears in the body of at most one rule in P.

Corollary 11 Let g be a subgoal defined by a singular Dat-
alog program, and S a set of variables. Then testing exe-
cutability of g in the context of S takes time linear in the
size of the Datalog program.

Observe that the size of the singular Datalog program PQ

may be greater than the size of the original query Q. This
is due to nested grouping constraints — a variable in an
extensional subgoal needs to be copied into the head of the
rule for each enclosing group.8 Let group(Q) and size(Q)
denote the number of nonsingleton groups in Q and the size
of Q, respectively. Since procedure gen is invoked on every
group of subgoals in Q, it follows that the size of PQ is
O(group(Q) · size(Q)). Summarizing the discussion above,
we can infer the following claim from Corollary 11.

Corollary 12 Let Q be a conjunctive query with grouping
constraints. Then the executability problem for Q can be
solved in time O(group(Q) · size(Q)).

In fact, it can be shown that group(Q) = O(size(Q)).
Therefore, in the worst case, the executability problem for
CQGs can be solved in time quadratic in the size of the
query. Note that if we view a conventional conjunctive query
Q as a CQG, then group(Q) = 1. Therefore, the following
claim immediately follows from Corollary 12.

Corollary 13 The executability problem for conventional
conjunctive queries can be solved in time linear in the size
of the query.

5.2 Distributed Conjunctive Queries
A distributed conjunctive query (DCQ) is like a conven-

tional conjunctive query except that each subgoal in the
query may be distributed among several sources. Given a
DCQ, g1 ∧ . . . ∧ gk, let us assume that each subgoal gi is
distributed among sources Di1, . . . , Dini

. We will use the
notation, gi@Diji

, to represent the distribution of subgoal
gi at source Diji

, i.e., gi@Diji
is an extensional subgoal to

be evaluated at Diji
. Therefore, the DCQ above can be

viewed as semantically equivalent to the following formula
in CNF:

(g1@D11 ∨ . . .∨ g1@D1n1
)∧ . . .∧ (gk@Dk1 ∨ . . .∨ g1@Dknk

)

Clearly, the formula above is equivalent to a union of con-
junctive subqueries in the form of g1@D1j1 ∧ . . .∧ gk@Dkjk

,
where 1 ≤ ji ≤ ni for all 1 ≤ i ≤ k.

Here we will assume that different sources may impose
different binding pattern restrictions for the same exten-
sional predicate, but the number of feasible binding patterns
is bounded for each extensional predicate at each source.
Let Q = g1 ∧ . . . ∧ gk be a DCQ, and S a set of vari-
ables. We will say that Q is fully executable in the con-
text of S, if for all 1 ≤ i ≤ k, 1 ≤ ji ≤ ni, the subquery,
g1@D1j1 ∧ . . . ∧ gk@Dkjk

, is executable in the context of

8This is not the optimal way of generating PQ from Q in
order to solve the executability problem, but it does not
affect our complexity results asymptotically.

S (recall Definition 3 in Section 2.2). We will say that Q

is partially executable in the context of S, if there exists
1 ≤ ji ≤ ni for all 1 ≤ i ≤ k, such that the subquery,
g1@D1j1 ∧ . . . ∧ gk@Dkjk

, is executable in the context of S.
Now let us consider how to decide whether a distributed

conjunctive query is fully executable. The brute-force ap-
proach is to check the executability of every subquery. Since
CNF-to-DNF conversion incurs an exponential blowup, it
appears that solving this problem would require exponen-
tial time.

Not really. Note that rules in Datalog programs represent
unions. Given a DCQ, Q = g1 ∧ . . .∧ gk, we can construct a
simple nonrecursive Datalog program, PQ, as follows. First
we add to PQ the following rule: g :− g1, . . . , gk, where g is
a new subgoal. Then for each gi distributed at source Diji

,
we create a rule, gi :− gi@Diji

, and add it to PQ. In the
following we will show that Q is fully executable in the con-
text of S, iff subgoal g defined by the Datalog program PQ

is executable in the context of S, i.e., algorithm exec↑ (g, S)
returns true.

Clearly, when algorithm exec↑ (g, S) returns true, a feasi-
ble order has been computed for subgoals g1, . . . , gk. It can
be shown that this order is feasible for any subquery of Q

in the context of S, by Definition 3. Therefore, Q is fully
executable in the context of S. Now suppose exec↑ (g, S)
returns false. Consider the query plan constructed by the
algorithm when it terminates. Let gj1 , . . . , gji−1

be the sub-
goals that are already ordered, and gji

, . . . , gjk
the subgoals

that are not yet ordered. Clearly, for each gjm , i ≤ m ≤ k,
there must exist a source Djmxm such that gjm@Djmxm is
not ordered. It can be easily verified that the subquery
gj1@Dj1x1

∧. . .∧gji−1
@Dji−1xi−1

∧gji
@Djixi

∧. . .∧gjk
@Djkxk

cannot be executable in the context of S, where Djmxm is
any source to which gjm is distributed for 1 ≤ m ≤ i − 1.
Therefore, if exec↑ (g, S) returns false, then Q is not fully
executable in the context of S. Summarizing the discussion
here, we have the following claim.

Corollary 14 Checking if a distributed conjunctive query,
g1 ∧ . . . ∧ gk, is fully executable in a given context takes
time O(

Pk

i=1 d(gi) · size(gi)), where d(gi) is the number of
sources to which subgoal gi is distributed, and size(gi) is the
size of gi.

It is fairly straightforward to check whether a distributed
conjunctive query is partially executable in a given context.
In fact, we can simply aggregate all the feasible binding
patterns for each predicate from all sources, and check if
there is a feasible order for the original query with respect
to the aggregated binding patterns. Therefore, based on the
time complexity analysis in Section 4.2, we can draw the
following conclusion.

Corollary 15 Checking if a distributed conjunctive query,
g1 ∧ . . .∧ gk, is partially executable in a given context takes
time O(

Pk

i=1 d(gi) · size(gi)), where d(gi) is the number of
sources to which subgoal gi is distributed, and size(gi) is the
size of gi.

We have just shown that the time complexity is about the
same for deciding either full or partial executability of dis-
tributed conjunctive queries. Both problems can be solved
efficiently. What if a distributed conjunctive query is par-
tially executable but not fully executable? In this case,

we are faced with the problem of computing all the exe-
cutable subqueries. This is essentially a enumeration prob-
lem, which the following theorem indicates is unlikely to be
tractable in general.

Theorem 16 It is #P-complete to count the number of ex-
ecutable subqueries of a distributed conjunctive query. This
complexity holds even if there are only two sources where
the subgoals are distributed, and each predicate has only
one minimal feasible binding pattern at each source.

6. RELATED WORK
The problem of ordering subgoals under binding pattern

restrictions has been studied extensively [9, 16, 15, 6, 8, 17].
Most closely related to our work here is the work of [9], [16],
and [15]. The subgoal ordering algorithm proposed in [9]
was targeted at recursive Datalog programs, whereas ours is
designed specifically for nonrecursive cases. It was proved
in [16] that the executability problem for recursive Datalog
programs is EXPTIME-complete. Here we show that the
problem is PSPACE-complete when restricted to nonrecur-
sive cases. An earlier study [15] showed that the algorithm
proposed in [9] has time complexity O(n2k+5), where n is
the size of the Datalog program having predicates of maxi-
mum arity k. In [15], an algorithm for ordering subgoals in
conjunctive queries was presented; it runs in time quadratic
in the size of the query. In contrast, our algorithm takes
only linear time.

The work of [13, 6, 17, 4] also addressed the problem of
querying information sources with access restrictions. But
the main challenge there is to compute query plans using
views only, which are either semantically equivalent to the
original query [13, 17], contained by it [6], or produces the
maximal set of answers possible [4]. The polynomial-time
algorithm proposed in [4] is capable of generating recursive
query plans. However, instead of ordering subgoals explic-
itly, it uses domain rules to overcome binding pattern re-
strictions. In [18], an exponential-time algorithm was pro-
posed for computing capabilities of information sources. Our
complexity results here show that the associated enumera-
tion problem is #P-complete.

More recently, several researchers investigated the prob-
lem of deciding executability of queries when query contain-
ment needs to be taken into account [7, 11, 10]. In this
work, a query is said to be feasible if there exists an equiv-
alent, executable query. Therefore, the notion of feasibility
can be characterized as semantic executability, whereas our
algorithm here considers only the syntactic form of a query.
However, it has been shown that deciding feasibility is as
hard as deciding query containment — NP-complete for CQ
and UCQ [7], ΠP

2 -complete for CQ¬ and UCQ¬ [11], and un-
decidable for recursive Datalog programs [7] and first-order
queries in general [10]. Nevertheless, our algorithm can be
used by the work of [7, 11, 10] to compute the answerable
part of a query more efficiently.

In [10], it was proved that deciding orderability (the same
as executability here) of first-order queries is NP-complete,
if each intensional predicate can be annotated with only one
binding pattern. In contrast, our results imply that if multi-
ple annotations are allowed (a much more practical assump-
tion), then the problem can be solved in polynomial time
(see Section 7 for more details). Finally, based on an ex-
tension of the relational chase theory, [3] proposed a unified

framework for rewriting queries in the presence of views,
integrity constraints, and access restrictions. However, the
algorithms in [3] are not guaranteed to terminate.

7. DISCUSSION AND CONCLUSION
Note that our algorithm can be extended to handle nonre-

cursive Datalog programs with safe negation, which requires
that all the variables in a rule appear in some positive sub-
goal in the rule body. That is, negative subgoals are not
supposed to “generate” bindings for variables. Thus, we
can easily extend our notion of executability here as fol-
lows (which is the same as the notion of orderability defined
in [10]). Let G be a set of subgoals and S a set of variables.
We use G+ and G− to denote the set of positive and nega-
tive subgoals in G, respectively. Then G is executable in the
context of S, if G+ is executable in the context of S, and all
the subgoals in G− with negation removed are executable
given bindings for all of their variable arguments. There-
fore, as far as executability is concerned, negative subgoals
can be simply treated like positive subgoals with all variable
arguments bound.

It is worth pointing out that our algorithm can still be op-
timized in several different ways — the way it is presented
here is to facilitate our correctness and time complexity anal-
ysis. First, it is amenable to parallel implementation, al-
though the degree of parallelism may be limited [16]. In
particular, we do not assume any specific execution order
on calls to procedure bind(X, N,G) and resolve(q,V) in our
correctness analysis. Therefore, these two subroutines may
as well be implemented as separate threads that run simul-
taneously. Second, runtime performance may be further im-
proved if the query plan is only expanded incrementally so
as to avoid redundant computation for subgoals having com-
parable binding patterns. This can be done by maintaining
for each predicate a list of binding patterns that have been
verified to be feasible. Whenever a new subgoal needs to be
expanded, its binding pattern is first checked against these
lists. Clearly, there will be no need for expansion if a match
is found. Finally, we do note that different orders of ex-
ecuting calls to procedure bind(X, N,G) and resolve(q,V)
may exhibit different runtime performance. This scheduling
aspect of the algorithm needs further investigation.

There is still one problem that remains open. In [16],
it was shown that the executability problem for recursive
Datalog programs is EXPTIME-complete. Making things
worse, a recursive Datalog query may have multiple exe-
cutable query plans that are not isomorphic to each other
in terms of their rule expansion structures (see [16] for an
example). Nevertheless, it is not known whether this prob-
lem can still be solved in linear time, i.e., an algorithm, upon
returning true, should only spend time linear in the size of
the executable query plan constructed by the algorithm.

Acknowledgments
The work of Michael Kifer was supported in part by NSF
grant CCR-0311512, IIS-0534968, and by U.S. Army Med-
ical Research Institute under a subcontract through BNL.
The work of Guizhen Yang and Vinay K. Chaudhri was sup-
ported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHD030010. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not neces-

sarily reflect the views of DARPA, or the Department of
Interior-National Business Center (DOI-NBC).

8. REFERENCES
[1] J. L. Ambite, V. K. Chaudhri, R. Fikes, J. Jenkins,

S. Mishra, M. Muslea, T. Uribe, and G. Yang.
Integration of heterogeneous knowledge sources in the
CALO query manager. In ODBASE, 2005.

[2] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query
reformulation for dynamic information integration.
Journal of Intelligent Information Systems (JIIS),
6(2/3):99–130, 1996.

[3] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting
queries using views with access patterns under
integrity constraints. In ICDT, 2005.

[4] O. M. Duschka, M. R. Genesereth, and A. Y. Levy.
Recursive query plans for data integration. Journal of
Logic Programming (JLP), 43(1):49–73, 2000.

[5] A. V. Gelder and R. W. Topor. Safety and translation
of relational calculus queries. ACM Transactions on
Database Systems (TODS), 16(2):235–278, 1991.

[6] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB, 1996.

[7] C. Li and E. Y. Chang. On answering queries in the
presence of limited access patterns. In ICDT, 2001.

[8] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina,
Y. Papakonstantinou, J. D. Ullman, and M. Valiveti.
Capability based mediation in TSIMMIS. In
SIGMOD, 1998.

[9] K. A. Morris. An algorithm for ordering subgoals in
NAIL! In PODS, 1988.

[10] A. Nash and B. Ludäscher. Processing first-order
queries under limited access patterns. In PODS, 2004.

[11] A. Nash and B. Ludäscher. Processing unions of
conjunctive queries with negation under limited access
patterns. In EDBT, 2004.

[12] C. H. Papadimitriou. NP-Completeness: A
retrospective. In International Colloquium on
Automata, Languages and Programming (ICALP),
1997.

[13] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In
PODS, 1995.

[14] A. Segev. Optimization of join operations in
horizontally partitioned database systems. ACM
Transactions on Database Systems (TODS),
11(1):48–80, 1986.

[15] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, Volume II: The New
Technologies. Computer Science Press, 1989.

[16] J. D. Ullman and M. Y. Vardi. The complexity of
ordering subgoals. In PODS, 1988.

[17] V. Vassalos and Y. Papakonstantinou. Expressive
capabilities description languages and query rewriting
algorithms. Journal of Logic Programming (JLP),
43(1):75–122, 2000.

[18] R. Yerneni, C. Li, H. Garcia-Molina, and J. D.
Ullman. Computing capabilities of mediators. In
SIGMOD, 1999.

