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ABSTRACT
Urban planning is a complex decision making process which
must compensate for the various interests of multiple stake-
holders with respect to physical, social, and economic con-
straints. Despite growing interest in using A.I. in urban
design and planning this community remains a field domi-
nated by human experts. Recent catastrophic disasters such
as hurricane Katrina, however, have underscored the need
for increased automation and more efficient urban design
processes. One particularly urgent decision making in post-
disaster urban planning is that of finding good locations for
temporary housing. As an illustrative example of the poten-
tial of agent technologies in post-disaster planning contexts
we propose an agent-based decision support system that can
identify good candidate locations for a specific purpose. We
showcase an application of our decision support system in
pre-disaster mode that identifies a set of ideal locations for
potential revitalization. We then discuss how this system
can be extended to solve a problem of finding good locations
for temporary housing in post-disaster mode. Our prelimi-
nary experimental results show promising potential of using
agent technologies towards solving real life problems in the
urban planning domain.

Categories and Subject Descriptors
[Decentralized agent-based architecture]; [Multiagent
learning]

Keywords
Urban planning, decision support systems, machine learn-
ing, intelligent survey

1. INTRODUCTION
Recent catastrophic disasters have brought urgent needs for
diverse technologies for disaster relief. In this paper we
explore opportunities of A.I. research for solving real-life
problems in aid of post-disaster recovery and reconstruction.
Among various complex problems in post-disaster situations

we mainly focus on reconstruction of the community, specif-
ically from the urban planning perspectives.

Urban planning is a complex decision making process which
must compensate for the various interests of multiple stake-
holders with respect to physical, social, and economic con-
straints. Planners need to collect and thoroughly analyze
large amounts of data in order to produce robust plans to-
wards both short-term and long-term goals. This is normally
a careful and time-consuming task, due in part to limited
financial resources but also because design decisions often
generate cascading effects contingent on both pre-existing
physical urban structures and future design decisions. Re-
solving the conflicting interests of multiple entities has been
an important issue in urban design decision making. Par-
ticularly in the post-disaster planning case, understanding
persisting local constraints as well as the issues newly in-
troduced by the crisis is a key to a successful recovery and
reconstruction plan, i.e., a good coordination among vari-
ous stakeholders is a necessity. In reality, however, a lot
of necessary coordination is conducted only at a superficial
depth. Due to limited time and resources, many important
decisions are made by high level officials and various stake-
holders’ responses are collected subsequently, often through
hasty paperwork.

Although agent-based modeling is gaining popularity in ur-
ban planning research community [12, 2] little has been done
for domain experts to recognize benefits of utilizing agent
technologies in this domain, and this domain still remains
a field strictly dominated by human experts. Recent catas-
trophic disasters such as hurricane Katrina, however, have
underscored the need for increased automation and more
efficient urban design processes.

In pre-disaster mode planning tasks are ordered by prior-
ity and resource availability and only a small number of
tasks are handled at a time. In the post-disaster situation,
however, an overwhelming number of high priority tasks are
produced overnight and planners must make thousands of
complex decisions in a very short time. Various types of
new and updated information, such as damage assessment
and resource availability, arrive in an arbitrary order and
decisions must be made dynamically. It is unlikely that all
of the necessary information is available at the time of deci-
sion making, thus decision support systems that can provide
timely data estimation and inference capability are desper-
ately desired.



One good example of the kind of decision making that could
benefit from the timely assistance of autonomous agents is
the problem of finding good locations for temporary housing
after crisis. Location hunting is a complex constraint opti-
mization problem that must compensate for various case-
specific local constraints as well as a set of well-defined legal
constraints, such as NEPA (National Environmental Policy
Act) guidelines. Due to the urgency of the task and lim-
ited resources, candidate selection is hurriedly made, paying
little attention to many crucial local constraints.

In this paper we focus on the specific task of location find-
ing in urban planning as our initial target problem. In par-
ticular, our system model is based on urban typology prac-
tice, which is a typical methodology in the urban planning
decision making process that classifies urban components
according to their various structural and socioeconomic as-
pects. We present an agent-based framework that utilizes
machine learning for intelligent decision support in this do-
main, and consider applications for both pre-disaster and
post-disaster urban planning problems. First, we present
an example application of finding good locations for poten-
tial revitalization in urban planning in pre-disaster mode.
Our preliminary experiments show promising results that
agent-based approach can boost the performance of urban
planning. We then propose how to apply the same frame-
work to the problem of finding good locations for temporary
housing in post-disaster mode, and discuss further issues sit-
uated in a distributed environment of a larger scale disaster
management.

2. DISTRIBUTED DECISION SUPPORT SYS-
TEMS

An agent is an autonomous entity that can make decisions
through its own reasoning process. The reasoning criteria
can be as simple as a set of precoded rules, or a complex
utility function to be used to trade off various options. In
the problems of interest in our research the purpose of an
agent system is to assist human users in such a way that the
agent acts as if it is a shadow play of its human master by
learning the user’s decision criteria.

An assistant agent that is customized to a specific human
user can perform certain tasks on behalf of the user. For ex-
ample, calendar management agents can free up busy users
so that the users can spend time more efficiently on serious
tasks. CMRadar [10] is a distributed calendar scheduling
system wherein individual CMRadar agents assume respon-
sibility for managing different user’s calendars and negotiate
with other CMRadar agents to schedule meetings on their
users’ behalf. A CMRadar agent learns its master user’s
scheduling preferences using passive machine learning algo-
rithms only through observing several meeting scheduling
episodes.

Unlike the meeting scheduling problem, where each partici-
pant is treated more or less equally important, many impor-
tant decisions are made exclusively by a group of author-
ities in post-disaster mode due to the urgency of pressing
issues. Many case studies emphasize the importance of in-
volving local community residents in decision making[13],
thus efficient methods of incorporating local objectives and
constraints have been sought. We propose a distributed de-

cision support system that can provide better insights to
decision makers by learning representative decision models
for a specific issue by means of an intelligent survey system.
Whereas personal assistant agents have convenient access to
the user’s daily activities that provide training data for pas-
sive learning methods, a representative agent system must
actively participate in learning process in order to collect ge-
ographically distributed training data. In the next section
we illustrate a high level architecture of a representative
agent system.

3. REPRESENTATIVE AGENTS
Diverse interest groups are involved in the urban planning
decision making process. In pre-disaster mode, we consider
four major groups of people: urban planners (designers),
government officials or other related authority groups, in-
vestors, and community residents. It is often true that the
voice of actual community residents is weak due to two main
reasons: 1) lack of a representative organization, and 2) diffi-
culty of collecting their broad needs and constraints. Com-
mon ways of collecting such opinions are passive methods
such as voting and surveying. In pursuit of a better balance
among various stakeholder groups, e.g., by raising the voice
of community residents, it would be ideal to have represen-
tative agents that can quickly learn the decision model of a
group of people given a specific issue, e.g. whether a given
location is a good site for temporary group housing.

A survey is a traditional method of estimating the opinions
of a large group of people by asking predefined question-
naires to a group of randomly selected people. A survey
provides a snapshot of collective opinions of a group for a
specific issue, but often limited to high-level questionnaires.
We attempt to induce more general decision criteria for lo-
cation specific issues by linking a survey with physical and
socioeconomic information that is associated with the region
under consideration.

We have designed RAISE (Representative Agents in Intel-
ligent Survey Environment), an agent-based survey system
that learns a representative model of a large group of people
for a location specific issue. We aim to take advantage of
vast amounts of local information available from various GIS
information sources and high-performing machine learning
algorithms to efficiently utilize such data in conjunction with
an intelligent survey system. As opposed to using static
questionnaires we also use an active learning algorithm that
interactively chooses more informative examples as the next
questions to ask to guide the learning process.

Figure 1 illustrates a high level architecture of RAISE. The
target problem of RAISE is supervised learning in a dis-
tributed environment which contains two distributed sub-
problems: 1) data is distributed in multiple sources, and
2) labeling is conducted by multiple people through various
types of user interface.

RAISE provides two types of agents, information agents and
survey agents, in order to address each subproblem, respec-
tively. Information agents collect data from various sources
to produce a data set that can be used by the learning com-
ponent. A large amount of urban planning data is available
in GIS (Geographic Information System) data format from
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Figure 1: RAISE (Representative Agents in Intelli-
gent Survey Environment) architecture

various information sources. GIS is a powerful tool that in-
tegrates a geographic map with semantic information using
a multi-layered structure. Internally, these layers of infor-
mation is stored in a relational database.

The most crucial task of RAISE information agents is data
integration from multiple information sources. For instance,
if some subsets of information sources need to be aligned
multiple information agents must coordinate with one an-
other in order to produce a seamlessly integrated data set. In
addition, agents must be able to learn to recognize more re-
liable information sources because some information sources
may contain conflicting data.

Another important class of agents are survey agents. From
the learning component’s perspective survey agents are the
entities that provide correct labels for a given unlabeled data
example. The level of expertise varies depending on subject
groups participating in a survey. The way of presenting a
data example as a question in a survey to human subjects
is an important user interface research issue. For instance,
just a set of numeric values in raw form is obviously not a
good representation of an architectural component, such as
a building, even to domain experts.

Community residents might be able to identify a given en-
try just by the name of a building or visual information
such as a picture of the building. They make decisions us-
ing their local knowledge as opposed to what the system
presents as features. In other words, the features used by
non-expert users are unknown to the system. Hypotheti-
cally, we assume that the feature space modeled based on
domain knowledge can represent a decision model that is
equivalent to the user’s decision model containing hidden
features. We illustrate this issue again in section 4.1 using
another example.

Domain experts, such as urban planners, would want to see
more detailed information in addition to what is needed for
mere identification, e.g., land use code, number of tax en-
tries, whether the building is used for multiple commercial
purposes, etc.

• Location of temporary housing

• Sitting of temporary business location

• Sites for dumping disaster debris

• Road closure and reopening

• Bridge closure and reopening

• Restoration of critical infrastructure

• Permitting the reoccupation of damaged homes

Table 1: Short-term decision making issues

The necessity of decision support systems in this domain
is far greater in post-disaster mode than normal mode due
to the importance of safety issues and urgency of emergent
tasks. The target problems we try to solve using RAISE
after a crisis are short-term planning solutions with care-
ful consideration of long-term reconstruction goals. Some
examples of short-term decision making problems are listed
in Table 1. In this paper, we target a specific example of
short-term decision making problems: location hunting. For
instance, one of the most urgent problems in post-disaster
situation is identifying a set of good sites for temporary man-
ufactured housing such as trailers. Since temporary housing
sites tend to remain longer than the initially intended pe-
riod, the location must be carefully chosen and must not
interfere with long-term reconstruction.

The short-term issues in Table 1 are directly related to com-
munity’s daily activities thus it is crucial to incorporate com-
munity residents’ opinions. Ironically, those people who ac-
tually live in the community are often ignored when a deci-
sion is being made. In hope of raising the voice of community
residents we propose an agent-based system, RAISE, that
collects data from multiple information sources and learns a
representative decision model of community residents in the
form of an interactive survey.

4. URBAN DESIGN PLANNING PROBLEMS
The integrated perspective of form and function in urban
studies is not an innovative notion. In fact, it has been
the core subject of urban matters for a long time [5], Pre-
vious work, however, has primarily focused on one domi-
nant aspect of either form or function from a particular view
point, e.g. architecture, psychology, sociology or economics.
Furthermore, the range and definition of form and function
varies according to diverse disciplines. For instance, while
architects regard form as three dimensional shape of space
and building components in the intimate detail, economists
rather view it as two dimensional shape of cartographic
plane at the regional or national scale. Architects consider
function as activities in individual building spaces and the
in-betweens, whereas policy makers consider function as per-
formance of parcel or zone in the whole system of the city.

Resolving multiple views has been an important issue in
urban design decision making. The urban design profes-
sion contributes to shape the city through designing physi-
cal structures; however, it has generally been an execution of



form-based policy in this respect [1]. Recognizing the impor-
tance of considering interdisciplinary aspects of a problem,
urban designers have developed methodological frameworks
to investigate urban morphology in a manner that combines
interdisciplinary aspects [11]. Our research contributes to
this effort, by applying AI techniques to develop improved
representations and methods for reasoning about urban de-
sign issues in an integrated fashion. We focus on an impor-
tant methodological framework, typology, which represents
the understanding of urban settings by classification based
on present architectural and socioeconimic elements [5].

In general, urban typology analysis is a long term project
that requires careful data analysis and field studies. For
instance, the ARTISTS (Arterial Streets Towards Sustain-
ability) project in Europe was developed to identify types
of streets in order to provide better insights to urban plan-
ners and economists. This 2.2 billion euros budget project
involved 17 European countries and took three years to clas-
sify five categories of streets [15]. Their major contribution
includes statistical analysis of street functions and summa-
rization of results in a two-dimensional classification table
that can be used as a general decision criteria. Although
their classification rules were drawn from statistical analysis
human experts were the main forces of this project. The
experimental results show how they classified 48 streets into
5 categories based on their decision rules. Our attempt is to
carry out similar classification task but in an automated way
using machine learning techniques in the hope of assisting
decision makers heavily loaded with urgent tasks.

We project a typical typology analysis into a simplified three-
step process: data analysis, field study, and decision mak-
ing. Among these three steps, the field study is the most
expensive procedure in terms of both labor cost and time.
Our experiment shows potential usage of machine learning
techniques in urban typology problems. We also stress that
active learning algorithms are especially beneficial by reduc-
ing the number of labeled examples in training phase. In
practice, this means labor cost is reduced by avoiding less
informative field studies.

Supervised machine learning techniques have been success-
fully applied in various domains such as text categorization
[17]. Most of machine learning algorithms expect data to be
a well defined set of tuples, but in reality this is rarely the
case. For example, if data is stored in relational database
with multiple tables the data must be preprocessed into a
giant single table. Building an inference network from a re-
lational database is an interesting area of research [7] and
we also anticipate that our future work may be in this area.
For the sake of simplicity we assume in what follows that we
already have the data formatted into a set of tuples in our
experiments.

4.1 Modeling
Modeling an urban typology as a machine learning problem
is based on two important assumptions: 1) a set of relevant
features that define an input to a learning algorithm are
known in advance, and 2) data that describe the features are
a well-structured set of vectors. Applying machine learning
algorithms to a well defined set of data is a straightforward
task. However, a major difficulty of formulating urban ty-
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Figure 2: Features determining public-ness of urban
component

pology into a machine learning problem resides in feature
space modeling and compiling a set of relevant data.

The human experts’ elicitation of relevant features is often
vague and incomplete. We exemplify a modeling of fea-
ture space in Figure 2. This example depicts the feature
dependency graph that represents a perception of public-
ness. Public-ness is a meaningful concept in urban design
and relates to how people perceive whether a given urban
component is public or private. We modeled this example
based on a survey that was given to both domain experts
and non-experts. Although this example does not directly
address our specific target problem of location finding the
features in the graph, such as Massing, are commonly used
as urban decision criteria, and thus they are relevant to our
discussion.

Among these features the entries that are drawn in bold-
face in Figure 2 are the set of features that users consid-
ered important in decision making. Because the system can
only recognize well-structured data, e.g., features stored in
databases, only the features shown in grey are included in
our model. This example illustrates our modeling assump-
tion that domain experts’ model of relevant features are of-
ten abstract semantic concepts that depend on descriptive
features that are available in low level databases.

Massing, for instance, is a feature that differentiates build-
ings by their structural size information. In our information
sources Massing is represented as multiple features, height,
area, periphery, distance to nearest neighbor, etc. Our sur-
vey result also reveals the existence of hidden features that
are completely isolated from what is available in low level
database. These hidden features were denoted by intangi-
ble features in the picture, e.g., features related to ”Use
Patterns”. We learn from this example that a majority
of features in a human user’s model are abstract concepts,
whereas the system only has access to low level databases.
We make a specific assumption that abstract concepts that
human experts consider relevant in fact depend on low level



Common
features

number of buildings, land use, building
height, perimeter, lot size, stories, shape
length, shape area, gross area, living area

Main
Streets

parcel business type, built year, renova-
tion year

Temporary
Housing Site

cost, past land use history

Table 2: Available features for site selection

features in databases. We also assume that the system has
access to such domain specific information sources. The
challenge then is to infer the mapping from low level fea-
tures to abstract concepts.

5. FINDING MAIN STREETS
This section describes our preliminary experiment on a pro-
totypical example of location finding process to demonstrate
the efficiency of using A.I. techniques in this problem do-
main. We chose the specific problem of identifying a certain
type of urban setting, Main Streets, based on architectural
and socioeconomic features of its vicinity. Although this
may appear a semantically different problem we note that
post-disaster location hunting is conducted through a similar
procedure when selecting potential candidate sites suitable
for different purposes. Some examples of common features
that are used for site selection for different purposes are
listed in Table 21 .

The concept of Main Street Approach is introduced from the
city revitalization projects dated back in 1970s, which was
an attempt to identify commercial districts that have po-
tentials for revitalization. The idea behind this wave was to
combine historic preservation with economic development to
restore prosperity and vitality to downtowns and neighbor-
hood business districts. Suffering from declined prosperity
against the regional mall and rapid urban development [8],
Main Street became the major issue of community plan-
ning. The criteria of choosing a right commercial district
varies from city to city, thus it is hard to find a generalized
set of rules to distinguish Main Streets from rest of districts.
Since one cannot apply one standard that works on a city
to another a local organization is entitled to perform their
own data analysis for each city.

The Main Street approach is, as many urban design subjects
are, usually pursued in partnership between public and pri-
vate sectors. For instance, the city of Boston has the Main
Street program in the department of neighborhood develop-
ment in the city hall. Such a team of public sectors collab-
orates with private sectors, e.g., local Main Street directors
who are usually elected or hired by the community. In a
city or regional level, the Main Street is a vital strip within
the whole vessel network of the city. At the same time, the
Main Street is the center of the local area in a local neigh-
borhood level. Since each Main Street has unique character-
istics and problems identified by the neighborhood in which
it belongs, it is important to understand and identify the
local context of the community. Additionally, along with
the consideration of historical preservation, the Main Street

1This list contains only the features that are available
through local GIS information sources.

Figure 3: Main Streets in Boston, Massachusetts

approach conveys reallocation of existing architectural and
socioeconomic resources, as opposed to urban renewal, in
the neighborhood.

Accordingly, Main Streets raise an important issue that stems
from the complexity of communications among multiple ac-
tors. The set of actors involved in Main Street design process
includes city officials, local directors, design professionals,
communities, developers, investors, etc. The key to a suc-
cessful Main Street design lies in resolving diverse interests
and constraints of multiple actors from architectural, social,
economic, and historical perspectives. We propose a system-
atic way to work out the ”multiple views” problem of urban
typology by providing an intelligent decision support system
that can learn various actors’ typology decision criteria.

We investigated Main Streets in the city of Boston for this
study (Figure 3). Boston provides an ideal testbed for eval-
uation because a complete set of ideal districts were al-
ready identified as Main Streets by field experts. We used
relational database tables exported from GIS information
sources that are available from the city of Boston. The data
was then preprocessed to be suitable for general classifiers.
Initially we started with two database tables: buildings and
parcels. Note that a data entry in these tables represents a
building and a parcel, respectively, whereas our target con-
cept, Main Streets, is defined as a district which is usually
composed of several hundreds of buildings and parcels.

First, we applied unsupervised learning methods to group
buildings and parcels into a set of candidate districts. We
used a single-linkage clustering algorithm in which every
data point starts with a separate cluster and merges with the
closest neighboring cluster until a given proximity threshold
is satisfied. The proximity threshold was chosen empirically
to generate reasonable size clusters.

Our algorithm for identifying district candidates consists of
two clustering steps. Since the backbone of Main Streets is
a strip of commercial buildings we first clustered buildings
that are associated with commercial land use code in or-
der to retrieve strips of commercial buildings. At this step,
small clusters that contained less than 5 commercial build-
ings were filtered out. In the second step, the commercial



strips identified in the first step were treated as a single clus-
ter when the second round of clustering started, i.e., the set
of initial clusters in the second round was the union of com-
mercial strips, non-commercial buildings, and all of parcels.
The number of buildings and parcels in the resulting district
candidates were in the range of hundreds.

For simplicity, we used Euclidean distance between the two
centers of buildings as the distance measure. In order to re-
fine cluster boundaries we need to incorporate more accurate
separator data, e.g., geographic obstacles such as mountains
or rivers, and man-made obstacles such as bridges and high-
ways. This will be an interesting topic for a future work.
Using a raw data set containing 90,649 buildings and 99,897
parcels (total around 190,000 data points) our algorithm
identified 76 candidate districts. Each candidate cluster cor-
responded to one data row for a classifier, and aggregated
characteristics of a candidate cluster, such as average height
of the buildings, were used as features.

In our initial experiment, we tried a set of classifiers to de-
termine the best-fitting classifier in our particular problem
solving. Among a set of Decision Trees, a Nave Bayes clas-
sifier, a kNN (k-Nearest Neighbors) classifier, and an SVM
(Support Vector Macine) classifier, an SVM classifier best
performed [17]2. In general, SVM is considered one of the
best performing classifiers in many practical domains. De-
spite SVM’s high quality performance users outside A.I.,
such as designers, tend to prefer Decision Trees or genera-
tive models due to the fact that their results are more com-
prehensible. As a proposed resolution for explaining SVM
results to human users we learn a decision tree that is equiv-
alent to the learned SVM classifier in terms of classification
results on the test set. That is, after training an SVM clas-
sifier using a set of training data the system labels the re-
maining set of data with SVM’s prediction. Finally we train
a decision tree using the original set of training data plus
the remainder of data labeled by the learned SVM.

Interfacing a classifier with human users introduces many
interesting research issues in both ways, i.e., from human
users to classifiers and from classifiers to human users. For
instance, difficulty of explaining the rationale of classifier to
human users is described in the SVM example above. It
is also an interesting issue how to tell the system domain
expert’s “tips”. One simple way is to generate simulated
training examples based on the rules given by human experts
and retrain the system using augmented training data.

Labeling is an expensive process in this domain because la-
beling one district requires thoughtful analysis of huge data
and it further involves field study. This cost-bounded do-
main constraint leads us to favor learning algorithms that
work well with relatively small number of training examples.
One such idea is active learning in which learning system ac-
tively chooses the next training example to be labeled. We
took Tong and Koller’s approach over SVM [16]. The basic
idea is to suggest data points that are near the separation
boundary, which is quite intuitive and is also proven to be
very effective in other practical domains such as text classi-

2Due to limited space we omit formal definitions of vari-
ous classifiers and refer to Yang’s work [17] that extensively
evaluates various types of classifiers.

Figure 4: Active learning algorithm vs. Randomized
algorithm

fication.

Semi-supervised learning is another approach that is useful
when the number of labeled data is small. This approach
utilizes distribution of a large amount of inexpensive unla-
beled data to guide supervised learning. For example, co-
training method [3] learns two classifiers using disjoint sets
of features, i.e., two different views over the same data, and
admits only those predictions upon which both classifiers
agree. A more recent approach includes incorporating clus-
tering into active learning [9]. Using prior data distribution
their system first clusters data and suggests cluster repre-
sentatives to active learner. Their algorithm selects not only
the data points close to classification boundary but also rep-
resentatives of unlabeled data. We adopted their idea to find
the initial samples to be labeled. This technique, however,
didn’t make much difference in our experiment mainly be-
cause the size of unlabeled data was not large enough (After
preprocessing we had only 76 district candidates). We would
expect higher impact on performance if we had a larger set
of data.

We used precision, recall, and their harmonic mean as eval-
uation metrics. In our example, precision p is the ratio of
the number of correctly identified Main Streets to the total
number of trials. On the other hand, recall r is the ratio
of the number of correctly identified Main Streets to the
total number of Main Streets in Boston. Because the two
measures are in inverse relation their harmonic mean is of-
ten used as a compromising measure. F1 measure, which
is a harmonic mean of precision p and recall r is defined in
equation (1).

F1 =
2pr

p + r
(1)

Since we had a relatively small sized data set after pre-
processing we used Leave-One-Out-Cross-Validation (LOOCV)
to evaluate the general performance of Main Streets classi-
fier. LOOCV is a cross validation technique where one data



Precision Recall F1 measure
LOOCV 0.842 0.762 0.800

Table 3: Leave-One-Out-Cross-Validation Result

point is left for testing while a classifier is trained using the
rest of data points. The LOOCV results in Table 3 shows
promisingly good performance by achieving high F1 mea-
sure of 0.8. The results read that the system made 6 correct
predictions out of every 7 trials, identifying 76% of Main
Streets.

We also compared the performance of the active learning
strategy to the performance of the random learning strat-
egy. Under the random learning strategy the system also
learns an SVM classifier by incrementally taking more train-
ing examples. Whereas the active learning strategy takes
advantage of the distribution of unlabeled data in selecting
a next data point, the random learning strategy chooses an
arbitrary data point. We evaluated the performance of the
two approaches in terms of their learning speed.

Figure 4 shows the performance of active learning strategy
and random learning strategy. The experimental results in
Figure 4 are average performance over a set of 20 indepen-
dent trials. The experimental results first indicate that find-
ing Main Streets is a class of urban design decision making
problems that can be developed by using a machine learn-
ing approach. The results also show that the active learning
algorithm significantly3 outperforms the random learning al-
gorithm, achieving high classification accuracy after given a
relatively small number of examples.

6. LOCATION HUNTING FOR TEMPORARY
HOUSING

At an abstract level, the decision making process in post-
disaster mode is not different from the pre-disaster mode.
Planners seek good solutions that optimize the interests and
constraints of multiple entities. The scale of the problem,
however, is far greater. There are several important fac-
tors that increase the difficulty in post-disaster mode. First
and foremost, time is precious. Fast temporary recovery
is desired, but short-term solutions must be in harmony
with long-term reconstruction plans. Second, the load of
tasks is overwhelming, for instance, over 150,000 properties
were damaged or destroyed as a result of hurricane Kat-
rina in 20054. Third, a much larger group of entities are
involved due to crisis, including external aid groups such
as emergency management team, telecommunication ser-
vices, transportation services, utility services, education sys-
tems, economic development agencies, environmental agen-
cies, etc. Fourth, it is unlikely that planners have all re-
quired information at hand. Damage assessment is part of
on-going process while planning for reconstruction is being
done. The planning team should expect dynamic update
of information thus robustness and flexibility should be in-
cluded in planning objectives.

3This is statistically significant with a strong evidence of
p-value 0.01.
4This is based on the estimate made by RMS (Risk Man-
agement Solutions) on September 2, 2005.

Demand for temporary housing in that area
Site topography
Property owner willingness
Cost
Past land use
Existence of conflicting redevelopment plans
Access to existing utilities
Engineering feasibility
Environmental/cultural resource sensitivities

Table 4: Temporary Housing Site Selection Criteria

Providing temporary housing for those who have been dis-
placed in the aftermath of disasters is one of the most urgent
issues in disaster management. When the demand for emer-
gency housing exceeds what existing housing facilities can
accommodate, new temporary housing sites are constructed
for a group of manufactured homes and mobile trailers, e.g.
FEMAville – FEMA (Federal Emergency Management As-
sociation) trailer park.

Six months after hurricane Katrina only half of around 130,000
requests for temporary manufactured housing and mobile
trailers were fulfilled, leaving tens of thousands of residents
without a place to live [14, 6]. The major problem was not
in the shortage of trailer supply, but in the failure to find
proper locations to install the trailers. In addition, the poor
quality of lot specification on paperwork hindered the instal-
lation process, dropping the daily installation rate down to
65%. A more fundamental problem that has been seriously
criticized is rooted in the lack of public involvement, i.e., the
opinions of local community residents were not reflected in
decision making [4].

As shown in the failure of the Katrina temporary housing
project, finding good locations for emergency group housing
is a complicated problem. First, designated officials such
as FEMA’s contractors choose a set of candidate sites by
reviewing local information: aerial photos, maps, site recon-
naissance field surveys, and local officials’ comments. Fac-
tors considered in selecting a site are listed in Table 4 [6].
For a selected site that satisfies the site selection criteria an
in-depth analysis of Environmental Assessment (EA) is con-
ducted before a final decision is made. Usually a complete
EA is limited to one or two sites at a time due to limited
resources and the searching for alternative sites continues in
parallel. The result of EA is either a positive confirmation
that the construction of temporary housing in the selected
location does not have significant impact on surrounding en-
vironment, or a rejection due to potentially significant im-
pact. The resulting EA reports are posted for public re-
sponse, but only for a brief period of time, e.g., typically 2
days, due to emergency nature of this action. It has also
been criticized that expertise of local community members
has been poorly incorporated in site selection process.

We design another application of RAISE to assist the site
selection process. As we have shown in the Main Streets ex-
ample, we can model this temporary housing site selection as
a distributed classification problem. The major difficulty in
modeling urban planning problem as a machine learning task
lies in feature space modeling and availability of relevant



data. In order to address the multiple views problem fur-
ther we model RAISE agents for three stakeholder groups:
government officials who make final decisions, disaster vic-
tims who needs emergency housing, and property owners.
The government officials are working on behalf of disaster
victims to maximize social welfare, thus they need to coor-
dinate to understand supply and demand of each other. The
property owners in this model have priority to act selfishly
to maximize their own benefits. In fact, the failure of the
Katrina temporary housing project is attributable to such
selfish actions, the so called NIMBY (not in my backyard)
problem. We aim to help resolving this problem with a mul-
tiagent system approach by assisting policy makers to design
a better mechanism.

7. CONCLUSION AND DISCUSSION
Recent disasters have brought increased concerns for post-
disaster recovery and reconstruction. The baseline motto
during planning for post-disaster recovery is that post-disaster
planning is an extension of a long-term community develop-
ment plan, thus, incorporating local information and the
city’s comprehensive plan is the key to successful planning.

Although it is easy to consider post-disaster planning as an
independent task case study shows that post-disaster recov-
ery plans that are well integrated with community’s com-
prehensive plan are more effective in finding creative solu-
tions [13]. In addition, it provides opportunity to utilize
resources more efficiently in order to contribute to prob-
lem solving in a larger picture. For example, sometimes
scare resources suddenly become available after the disaster
and good plans maximize resource utility by identifying long
waiting tasks that have been in the queue for these scare re-
sources. Post-disaster planning also provides opportunities
to fix existing problems due to previous suboptimal planning
decisions. The decision making policy of designated emer-
gency managers, such as FEMA officials, is primarily based
on safety and urgency of tasks. They develop their own ur-
gent operations that are focused on immediate response and
recovery functions following a disaster. However, local com-
munity’s coordination with emergency managers is crucial
for successful plans, because community members are the
ones who actually monitor and implement the plans.

In this paper we discussed agent-based modeling of urban
planning problems both in pre-disaster mode and post-disaster
mode. We presented a framework, RAISE, to build a rep-
resentative agent in the form of an intelligent survey sys-
tem. Our preliminary experiment on a location prediction
project, Finding Main Streets, provides a good showcase
example of the opportunities that agent technologies pro-
vide towards solving real life problems, in particular in post-
disaster management problems.
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