
Tracking and Learning Acceptance Critera for Delegated Tasks∗

Timothy W. Rauenbusch and Kenneth Conley
Artificial Intelligence Center

SRI International
Menlo Park, CA 94025

rauenbusch,conley@ai.sri.com

Abstract

This paper describes a software system that enables people to
both (1) track tasks on their to-do lists and (2) delegate re-
sponsibility for performing tasks to others. Combining these
two processes provides several benefits, including: (1) auto-
mated tracking; and (2) simplified communication and orga-
nization of information relevant to a task. On top of these
core capabilities, the system supports automatic learning of
whether a delegated task should be accepted. A user study
investigated whether machine learning methods are effective
in predicting whether a delegated task will be accepted. The
results indicate that off-the-shelf machine learning techniques
can help predict whether a task will be accepted based on ear-
lier examples of task acceptance but that they are prone two
types of errors. Task acceptance learning capability may im-
prove performance because the system can take on respon-
sibilities for task management that would otherwise be per-
formed manually.

Introduction
Recent work has investigated systems that assist people in
performing their activities in an office, at home, in hospitals,
and elsewhere (Varakantham, Maheswaran, & Tambe 2005;
Scerri, Pynadath, & Tambe 2002; Fraser & Hauskrecht
2000; Pollack et al. 2003). One key function of such sys-
tems is the monitoring and allocation of tasks (Varakantham,
Maheswaran, & Tambe 2005; Hunsberger & Grosz 2000).
While the majority of this work has focused on tasks per-
formed by computer agents, other work has been primarily
concerned with tasks performed by people (Bellotti et al.
2005; Whittaker, Bellotti, & Gwizdka 2006). Whether tasks
are performed by people or software agents, effective assis-
tance software must support (1) tracking tasks and (2) an
ability to allocate tasks to those in the best position to per-
form them. Systems designed for tasks performed by com-
puter agents typically focus on allocation, while systems de-

∗This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract No.
NBCHD030010. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA), or the Department of Interior-
National Business Center (DOI-NBC).
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

signed for tasks performed by people have focused on track-
ing. Therefore, previous systems for task management have
generally focused on only one or the other of the two pro-
cesses.

This paper describes a system that combines the two pro-
cesses. It has several desirable features:

1. tasks are specified using natural language phrases;

2. additional information relevant to a task can be easily as-
sociated with it throughout its life cycle via drag and drop;

3. tasks can be delegated to others and monitored by inter-
ested parties after delegation.

In the basic version of the system, when a person receives
a request to take on responsibility for a task, she must decide
whether to accept or reject that responsibility. This paper
describes an enhancement: a learning component that learns
to accept or reject tasks on a person’s behalf. Okamoto et al
(2006) have shown that agent-assisted contingency manage-
ment could potentially result in large gains in organizational
performance and small gains for increased communication
speed. We aim to achieve gains both from improved orga-
nizational performance and increased communication speed
through the learning component. Based on organizational
relationships, current workload, task type, and other fea-
tures, this component learns whether or not a user will ac-
cept or reject a task delegated by another person. Based on
the learned model, a person can have tasks automatically ac-
cepted or rejected by the system, which can reduce interrup-
tions during a period of high workload and improve response
times to the person delegating responsibility for the task.

The learning component uses off-the-shelf classification
algorithms to determine whether a task request should be ac-
cepted or rejected. We analyzed the error rate of the learning
component by gathering data during a study that involved
sixteen users generating 126 delegation requests. The re-
sults indicate that off-the-shelf machine learning techniques
can help predict whether a task will be accepted based on
earlier examples of task acceptance but that they are prone
to two types of errors.

The architecture of the system described in this paper is as
follows. Tasks are managed through the Towel to-do list ap-
plication (Conley & Carpenter 2007). A separate delegation
learning agent monitors events from Towel, saves labeled
examples of task delegation requests, and learns to predict



whether a delegation request should be accepted. A setting
in Towel controls whether the system can automatically ac-
cept or reject tasks based on the decisions made by the dele-
gation learning agent.

The contributions of this paper are:

1. a system that combines tracking tasks and allocating re-
sponsibility for tasks to other agents in a novel way;

2. analysis of the impact of automatic acceptance of task del-
egation requests;

3. a study of the effectiveness of machine learning methods
for making acceptance and rejection decisions.

This paper is organized as follows. In the next section,
we describe the Towel system for tracking and delegating
tasks. We then describe the component that learns whether a
task delegation request should be accepted, and provide re-
sults of a study that tested its effectiveness. Next, we situate
our system in the context of related work and then provide
conclusions and suggest areas for future work.

Monitoring and Delegating Tasks
The user interface for the monitoring and delegating of tasks
is the Towel to-do list application (Conley & Carpenter
2007). The Towel to-do list is a narrow window designed
to sit in the peripheral part of a user’s screen where it can
be easily monitored. To-dos within the Towel are associated
with textual reminders: “walk the dog,” “groceries,” “meet-
ing with Bill.” Towel enables the user to organize these to-
dos by grouping, tagging, and hiding. It also enables users to
perform modifications on individual to-dos such as checking
(completing), delegating, setting deadlines, and starring.

The Towel to-do list extends beyond its reminder and or-
ganizational role by enabling users to drag resources, such
as files and URLs, onto an item in the to-do list (Bellotti et
al. 2005). These resources allows users to accumulate in-
formation about a task, such as where or how a task can be
done, or even define the task itself. For example, a to-do
labeled “finish paper” might have the paper and citations at-
tached. Instead of searching for the paper when the work
needs to be done, the user can use the Towel window as a
launch pad for performing and updating the task.

Our system uses a delegative model of task management
to augment these task management capabilities and provide
means for exchanging tasks directly from the to-do list. A
user may choose to delegate a to-do either to another person
or to her personal software assistant (Myers & Yorke-Smith
2005). We focus on delegation to people, specifically team-
mates (for example, a coworker working on the same project
in an office environment). When a user (the sender) wishes
to send a delegation request to a teammate, she is given the
option of providing a message and additional temporal de-
tails about the task (a deadline and duration estimate) that
her teammate may find useful. The teammate (the receiver)
then chooses to accept or reject the request. Changes made
to a to-do by the receiver after accepting a delegation request
are communicated back to the sender. This feature enables
automated tracking of a task: the sender can glance at her
to-do list to monitor the progress of a task throughout its

Figure 1: Towel To-do List: Context Menu

life cycle, regardless of who is currently responsible for per-
forming it.

Example

The remainder of this section describes the task delegation
process using screenshots from Towel. Figure 1 shows He-
len Troy’s to-do list. The figure shows the context menu that
supports delegation. Helen has opened the context menu for
the “AAAI Delegation Paper” item, and after she chooses
the “Delegate to” menu item, she is presented with a list of
people and chooses one.

After choosing Bob Smith as the receiver for the delega-
tion request, Helen is presented with the delegation details
form shown in Figure 2. On this form, Helen specifies (1) a
message and summary; and (2) temporal information. Both
the message and summary are free text fields in which any-
thing might be specified. The summary field is the name
used when the task is shown on the to-do list. Two types of
temporal information may be specified: estimated effort and
deadline. All of the fields on this form are optional; the in-
tent of the form is to allow further specification of task that
might be relevant to the receiver. Helen completes the form
by clicking on the button labeled “Delegate this task.”

Figure 3 shows the accept/reject dialog. This dialog ap-
pears on the receiver’s screen appears if task acceptance is
set to manual mode; that is, when the learning component
described in the next section is not making the acceptance
decisions automatically. The dialog presents the informa-
tion specified on the delegation details form, and includes



Figure 2: Towel: Delegation Details Form

Figure 3: Towel (Manual Mode): Acceptance Dialog

Figure 4: Towel To-do List: Waiting for Decision

Figure 5: Towel To-do List: Delegated

the name of the sender of the request. The receiver of the
task request may accept or reject the task by selecting the
appropriate button. (If task acceptance was set to automatic
mode, no dialog would appear, and the decision would be
made immediately according to the classifier described in
the next section.)

When task acceptance is in manual mode and the re-
ceiver has not yet chosen to accept or reject the request, the
sender’s to-do list displays the phrase “Waiting for [receiver]
to accept/decline” (Figure 4).

If the receiver chooses to accept the request, the item is
automatically placed on his to-do list. The item remains on
the sender’s to-do list and is updated automatically when
any changes to its status are made (Figure 5). If the re-
ceiver rejects the request, a dialog notifies the sender, and
the phrase “Waiting for [receiver] to accept/decline” is re-
moved from the item. To attempt to alleviate awkwardness
that may arise as a result of a task rejection, when the system
is in automatic mode, the sender is notified that the decision
was made automatically.

Task Acceptance Learning
The learning component of the system automatically re-
sponds to task delegation requests when the system is in au-
tomatic mode. The problem addressed by the component is
that of task acceptance learning, which is to automatically
determine whether a task should be classified as accepted
or rejected, given a set of labeled training examples. A la-
beled set of training examples consists of a set features that
describe each task delegation request, along with a label to
indicate whether the request was accepted or rejected.



Task Task
accepted rejected

Task should have Correct Under-
been accepted commitment
Task should have Over- Correct
been rejected commitment

Table 1: Errors in acceptance learning

There are advantages and disadvantages to pursuing au-
tomatic acceptance or rejection of task delegation requests.
The main advantages are time savings for both the sender
and receiver of the request. For the receiver, automatic clas-
sification means that she need not spend time considering
and responding to each request she receives; her time can
be spent on more important activities. For the sender, au-
tomatic classification means immediate feedback. The lag
time between sending a request and receiving a response is
eliminated. This decreased lag time is especially useful if
the request is rejected—a decision can be made immediately
about how to proceed.

The main disadvantages of automatic classification are
classification errors. Table 1 plots the two types of errors:
undercommitment and overcommitment. Undercommitment
occurs when a task delegation request that should have been
accepted is rejected. The costs of undercommitment is the
extra time that the sender incurs in finding an alternative way
to proceed (for example, delegate to someone else, abandon
the task, perform it herself, or try to resend the delegation
request). Overcommitment occurs when a task delegation
request that should have been rejected is accepted. The re-
ceiver of a task that is accepted in error may not have the
knowledge or resources required to perform it effectively.

Both types of errors introduce unnecessary costs and
neither type of error lends itself to domain- and task-
independent quantification. For example, erroneously re-
jecting a request from a manager for the task of preparing
a financial report may have a higher cost than erroneously
rejecting a peer’s request to bring food to the potluck. How-
ever, quantifying the costs of each error may be difficult. For
now, we are concerned with studying the error rates of task
acceptance learning, but do not explicitly quantify the costs
of the errors or the benefits of automatic acceptance of task
delegation requests.

Method
To test the efficacy of automated machine learning of task
acceptance, we conducted a study in which we collected
examples of task delegation requests along with a labels of
whether the requests were accepted or rejected. We then per-
formed a ten-fold cross-validation of two off-the-shelf ma-
chine learning algorithms on the data.

We identified three main categories of factors that people
use to determine whether they will accept or reject a task
delegation request:

Relationship — the relationship between the sender and
the receiver of the request (for example, whether they are

Category Feature
Relationship managerOf

managementHierarchy
Context of Receiver timeAvailable

shiftTasksCost
Task Specification deadlineDistance

latestStartTimeDistance
taskType

Table 2: Features used to describe examples

peers, or whether one is in a position of authority over the
other)

Context of Receiver — factors that affect the ability of the
receiver to take on new commitments (for example, the
number of current commitments on the receiver’s sched-
ule)

Task Specification — features that describe the task (for
example, deadlines or expected difficulty).

We collected task acceptance and rejection data as part
of a six-day study in which sixteen participants interacted
with a personal assistance software application while doing
real or simulated office work. Users were given instructions
on how to delegate tasks and were asked to use the delega-
tion component of the system. However, the particular to-do
items, and the acceptance decisions were left up to the par-
ticipants and were not specified in advance.

During the study, we collected labeled data for a total of
126 task delegation requests. Of these 126 requests, 97 were
accepted and 29 were rejected.

Table 2 summarizes several features of each task dele-
gation request that was recorded along with a notation of
whether the task was accepted or rejected. The managerOf
and managementHierarchy features aim to describe the rela-
tionship between the sender and receiver of the task delega-
tion request. managerOf is a boolean value that is true if and
only if the sender of the task is a manager of the receiver.
managementHierarchy is an integer that enumerates the dis-
tance between the sender and receiver in an organizational
hierarchy.

The features timeAvailable and shiftTasksCost aim to de-
scribe the context of the task delegation request receiver and
are a function of the receiver’s schedule and the expected
duration and deadline given by the task delegation request.
timeAvailable is a boolean value that is true if and only if
the user has sufficient time in its current schedule to accom-
modate the task’s expected duration by the deadline. shift-
TasksCost is an integer that enumerates the receiver’s current
commitments that would need to be abandoned or moved if
the requested task’s expected duration was to be incorpo-
rated into the schedule by the given deadline.

The features deadlineDistance, latestStartTimeDistance,
and taskType aim to describe features of the task in the re-
quest. deadlineDistance denotes the total number of minutes
between the deadline and the time the task delegation re-
quest was sent. latestStartTimeDistance is the deadlineDis-
tance minus the expected duration given in the task delega-



Classifier Undercommitment Overcommitment
Naı̈ve Bayes 89 (71%) 4 (3%)
Decision Tree 0 (0%) 29 (23%)

Table 3: Error rate in classification

tion request. taskType is an approximation of the sort of
task in the request, as computed from the natural-language
task description. We used the BEAM system (Chklovski &
Gil 2005; Gil & Chklovski 2007) to provide an estimate of
the task type. In the initial experiment, we supported task
types “Scheduling,” “Reviewing,” and “Other.” The BEAM
system intelligently relates natural-language to-do descrip-
tions to types. For example, BEAM categorizes the tasks
“Agree on meeting time” and “Schedule meeting with Paul”
as “Scheduling” tasks. The three initial task types were se-
lected because the system’s initial test domain was hiring a
job candidate that involved reviewing resumes and schedul-
ing interviews.

For many of the training examples, not all of the fea-
tures were specified. For example, if a sender did not spec-
ify a deadline for a task, deadlineDistance and latestStart-
TimeDistance cannot be computed. In such cases, a default
value was used as the value for the feature in the example.

Two standard machine learning algorithms were applied
to the data: (1) naı̈ve Bayes classifier and (2) C4.5 (J48)
decision tree classifier. A cross-validation study was used
to generate error rates. For each algorithm, the 126 data
points was divided into ten folds. Nine of the folds were
used as learning examples, and one was held out to test the
data. The process was repeated ten times, so that each fold
was held out for testing once. The two algorithms were
chosen because they are relatively well-known and access
to their implementations was readily available. Our goal
was to test the feasibility of machine learning techniques for
task acceptance—not to determine which learning technique
were best for the problem.

Results

Table 3 shows the error rates for learning on each of the
two classifiers. The results show that decision tree learning
was more effective in minimizing undercommitment, while
naı̈ve Bayes learning was more effective in minimizing over-
commitment. The naı̈ve Bayes classifier is conservative with
respect to accepting a task request. Therefore, it minimizes
its overcommitment rate (3%), while incurring a relatively
high rate of undercommitment: it labeled as rejected 89 of
the 97 tasks that were actually accepted.

The decision tree classifier is aggressive in accepting
tasks. It never rejected a task that should have been ac-
cepted. However, it accepted all 29 tasks that should have
been rejected.

Both the naı̈ve Bayes and the decision tree classifiers
made a significant number of errors. With the data gener-
ated from our study, it would appear that the naı̈ve Bayes
classifier is preferred in domains in which the cost of over-
commitment is high, and the decision tree classifier is pre-

ferred in domains in which the cost of undercommitment is
high. However, while the results of this study indicate that
machine learning may be useful for automatic acceptance
of tasks, further study is required before recommendations
should be made.

Related Work

As mentioned earlier, recent work has investigated systems
that assist people in performing their activities in a vari-
ety of settings (Varakantham, Maheswaran, & Tambe 2005;
Scerri, Pynadath, & Tambe 2002; Fraser & Hauskrecht
2000; Pollack et al. 2003). Personal assistant software sys-
tems have been used to address problems in decision support
(Li, Giampapa, & Sycara 2006), scheduling and coordina-
tion (Emami et al. 2006; Berry et al. 2006; Weber & Pollack
2007) and monitoring task progress (Chalupsky et al. 2001).
The to-do manager and delegation learning capability pre-
sented in this paper aim to provide support for coordination
and progress monitoring in a flexible way. The system pro-
vides communication and data entry infrastructure. It can
learn to make task acceptance decisions on a person’s behalf
but can also operate in a manual mode, where the person
remains the decision maker.

Okamoto et al (2006) aim to quantify the impact of per-
sonal assistant software on productivity in organizations.
Their results indicate that such software can improve per-
formance, that the improvement is typically not dramatic,
and that the areas in which such software is most useful is
not well understood. Our work aims to understand the ef-
fectiveness of learning for task acceptance but we have not
performed a systematic evaluation of the impact of our as-
sistance system on personal or group efficiency.

For many people, email is the primary application for
task management (Bellotti et al. 2005). Towel’s to-do-list-
based approach provides additional capabilities that we be-
lieve make it more desirable than email for certain types of
tasks: users get immediate feedback on the status of a task,
information about the task like deadlines are explicitly mod-
eled, and it simplifies task delegation by allowing the user to
pass along information about the task that has been accumu-
lated.

Conclusion and Future Work

We described a personal assistance software system that
combines the Towel to-do list management system that en-
ables a person to delegate a task to others and a component
for automatic acceptance learning. There were several ad-
vantages for the receiver and sender to using the system to
automatically accept or reject delegation requests. On the
other hand, automatic acceptance and rejection risks incur-
ring costs of overcommitment and undercommitment errors.
We conducted a study in which people generated 126 task
delegation requests. We applied two off-the-shelf classi-
fiers to the data and generated error-rate predictions using
the data. While the results indicate that naive Bayes and de-
cision tree classifiers may be effective in making acceptance
decisions of a user’s behalf, significant error rates occurred.



In the future, we hope to decrease the rate of overcommit-
ment and undercommitment. We plan to experiment with
performing learning on a per-user basis rather than across
all users. To do an effective study, we need to collect more
data from each user. The results of the experiments on the
learning were based on analysis of the 126 data points gen-
erated by all sixteen participants in the study. Using training
data gathered from a collection of users has the advantage of
more training examples but the drawback of possible over-
generalization. We plan to run another study in which we
collect more data per participant to investigate whether im-
provements in error rates can be attained by enabling the sys-
tem to learn a model of acceptance based on a single user’s
training examples.

In addition, we plan to test the effectiveness of additional
features of task delegation requests. For example, the rela-
tionship features managerOf and managementHierarchy are
currently only applicable to persons in the same hierarchi-
cal organization and requires that the organizational tree be
known in advance. We plan to investigate other, more ad
hoc, relationship features such as the difference in each per-
son’s job title in a hierarchy of job titles generally to approx-
imate seniority or reporting relationships that might affect
delegation request acceptance.

We also plan to extend the behavior of the learning com-
ponent beyond simple acceptance or rejection. For example,
we hope to study a system that learns which teammate would
be a good candidate for delegation of a particular task. We
propose to use performance metrics on prior tasks (possibly
generated automatically from deadline and actual comple-
tion times) in the training.

References
Bellotti, V.; Ducheneaut, N.; Howard, M. A.; Smith, I. E.;
and Grinter, R. E. 2005. Quality versus quantity: e-mail-
centric task management and its relation with overload.
Human-Computer Interaction 20(1–2):89–138.
Berry, P.; Peintner, B.; Conley, K.; Gervasio, M.; Uribe, T.;
and Yorke-Smith, N. 2006. Deploying a personalized time
management agent. In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous agents
and multiagent systems. New York, NY, USA: ACM Press.
Chalupsky, H.; Gil, Y.; Knoblock, C.; Lerman, K.; Oh, J.;
Pynadath, D.; Russ, T.; and Tambe, M. 2001. Electric
elves: Applying agent technology to support human orga-
nizations. In IAAI01.
Chklovski, T., and Gil, Y. 2005. An analysis of knowledge
collected from volunteer contributors. In Proc. of AAAI05.
Conley, K., and Carpenter, J. 2007. Towel: Towards an
intelligent to-do list. In AAAI Spring Symposium on Inter-
action Challenges for Intelligent Assistants.
Emami, G.; Cheng, J.; Cornwell, D.; Feldhousen, M.;
Long, C.; Malhotra, V.; Starnes, I.; Kerschberg, L.; Brod-
sky, A.; and Zhang, X. 2006. Active: agile coordinator
testbed integrated virtual environment. In AAMAS ’06:
Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, 1580–1587.
New York, NY, USA: ACM Press.

Fraser, H., and Hauskrecht, M. 2000. Planning treatment
of ischemic heart disease with partially observable markov
decision processes. AI in Medicine 18:221–244.
Gil, Y., and Chklovski, T. 2007. Enhancing interaction
with to-do lists using artificial assistants. In AAAI Spring
Symposium on Interaction Challenges for Intelligent Assis-
tants.
Hunsberger, L., and Grosz, B. J. 2000. A combinatorial
auction for collaborative planning. In Proceedings of the
Fourth International Conference on Multi-Agent Systems
(ICMAS-2000).
Li, C.; Giampapa, J.; and Sycara, K. 2006. A review of
research literature on bilateral negotiations. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Special
Issue on Game-theoretic Analysis and Stochastic Simula-
tion of Negotiation Agents 36(1).
Myers, K., and Yorke-Smith, N. 2005. A cognitive frame-
work for delegation to an assistive user agent. In Proc.
of the AAAI Fall Symposium on Mixed-Initiative Problem
Solving Assistants.
Okamoto, S.; Scerri, P.; and Sycara, K. 2006. Towards an
understanding of the impact of software personal assistants
on human organizations. In AAMAS.
Pollack, M. E.; Brown, L.; Colbry, D.; McCarthy, C. E.;
Orosz, C.; Peintner, B.; Ramakrishnan, S.; and Tsamardi-
nos, I. 2003. Autominder: An intelligent cognitive orthotic
system for people with memory impairment. Robotics and
Autonomous Systems 44:273–282.
Scerri, P.; Pynadath, D.; and Tambe, M. 2002. Towards
adjustable autonomy for the real-world. JAIR 17:171–228.
Varakantham, P.; Maheswaran, R.; and Tambe, M. 2005.
Exploiting belief bounds: Practical pomdps for personal
assistant agents. In AAMAS.
Weber, J. S., and Pollack, M. E. 2007. Entropy-driven
online active learning for interactive calendar management.
In International Conference on Intelligent User Interfaces.
Whittaker, S.; Bellotti, V.; and Gwizdka, J. 2006. Email as
personal information management. Communications of the
ACM 49(1):68–73.


