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Abstract

Most real-world dynamic systems are composed
of different components that often evolve at very
different rates. In traditional temporal graphi-
cal models, such as dynamic Bayesian networks,
time is modeled at a fixed granularity, gener-
ally selected based on the rate at which the
fastest component evolves. Inference must then
be performed at this fastest granularity, poten-
tially at significant computational cost. Contin-
uous Time Bayesian Networks (CTBNSs) avoid
time-slicing in the representation by modeling
the system as evolving continuously over time.
The expectation-propagation (EP) inference al-
gorithm of Nodelman et al. (2005) can then vary
the inference granularity over time, but the gran-
ularity is uniform across all parts of the system,
and must be selected in advance. In this pa-
per, we provide a new EP algorithm that utilizes
a general cluster graph architecture where clus-
ters contain distributions that can overlap in both
space (set of variables) and time. This architec-
ture allows different parts of the system to be
modeled at very different time granularities, ac-
cording to their current rate of evolution. We also
provide an information-theoretic criterion for dy-
namically re-partitioning the clusters during in-
ference to tune the level of approximation to the
current rate of evolution. This avoids the need
to hand-select the appropriate granularity, and al-
lows the granularity to adapt as information is
transmitted across the network. We present ex-
periments demonstrating that this approach can
result in significant computational savings.

Introduction

Bayesian networks (Dean & Kanazawa, 1989) — model
the system by slicing time into a sequence of equal-length
intervals. However, many systems are comprised of com-
ponents that change on vastly different time scales. When
modeling a person’s activity in an office environment, some
factors, such as their current job specification, evolvésqui
slowly, others, such as their current project compositidn,

a medium rate, and yet others, such as their current imme-
diate task, evolve very quickly (often depending on what
email they happened to get in the past few minutes). Sim-
ilar high disparities in time granularity occur when mod-
eling complex geopolitical situations, a person’s teliens
viewing pattern, and many more.

The framework ofcontinuous time Bayesian networks
(CTBNs)(Nodelman et al., 2002) provides a representa-
tion for structured dynamic systems that avoids the use of
a fixed time granularity. CTBNs build on the framework
of homogeneous Markov processes (Norris, 1997), which
provide a model of continuous-time evolution. CTBNs
model each process variable as a continuous-time Markov
process, whose dynamics depends on other process vari-
ables in the model. Thus, not only can variables evolve
at different rates, but the evolution rate of a single preces
variable can vary over time, in response to events occurring
elsewhere in the system.

Exact inference in CTBNs involves generating an
exponentially-large matrix representing the transition
model over the entire system state. Nodelman et al. (2005)
present an approximate inference algorithm for CTBNs
which is an instance of thexpectation propagation (EP)
algorithm (Minka, 2001). In this algorithm, the system is
segmented into time intervals that can vary in their length;
within each segment, messages are passed in an EP cluster
graph, which contains clusters that represent distripstio
over subsets of variables during that segment. While the
time segments can be of different length, all the clusters of
variables are broken up over the same segment boundaries.
Thus, if one cluster evolves more rapidly than others, re-
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in advance, a design choice which is far from obvious.  Bayesian networl8° over X, and acontinuous transition

In this paper, we present a new EP-based algorithnimode) specified using a directed (possibly cyclic) gr&ph
that has two important novel features. First, the algo-whose nodes ar& € X; Ux denotes the parents &f in
rithm uses a flexible cluster graph architecture where clusg. Each variableX € X is associated with a conditional
ters, and messages between them, can have varying tinietensity matrix,Q x|u, - The CIMs can be combined to
scopes. This feature allows us to fully exploit the natu-form a single homogeneous Markov process over the joint
ral time-granularity at which different sub-processedwwo  state space by a processashalgamation
by modeling different parts of the system at differenttime  The resulting density over complete trajectories can be
granularities. Second, we introduce a ndymamic-EPal-  formulated within the framework of exponential families
gorithm, where the algorithm dynamically chooses the ap{see Lauritzen (1996)). We define a sufficient statistics vec
propriate level of granularity to use in each cluster at eachor 7(c) comprised of sufficient statistics for each variable
pointin time. This level can depend both on the current ev{T[z|u], M [z, 2'|u]}: T[z|u] — the amount of time that
idence for that subset and on messages received from othéf = x while Uy = u; and M|z, 2'|u] — the number
parts of the system. Dynamic-EP utilizes an information-of times thatX transitions fromz to 2’ while Ux = u.
theoretic criterion to automatically decide whether a €lus Similarly, the natural parameters for they component of
ter should be encoded at a finer time granularity, and alsthe model are simply the diagonal terms and the logarithm
how it should be split. We illustrate the performance of of the off-diagonal termg(Q x|u) = {—4zu; I0(¢zeru) }-
our Dynamic-EP algorithm on networks where different Then, the probability of the trajectory over the variables i
variables evolve at different rates; our results suggesdt th the model can be written as the inner product of the suffi-
Dynamic-EP provides a much better time-accuracy tradeeient statistics and the natural parameter vectors:
off than using a uniform granularity.

. . . Py(o) o [] PYLx(T[X|U], MIX|U))

2 Continuous Time Bayesian Networks Xex

We begin by briefly reviewing the key definitions of Lx(T[X|U], M[X|U]) HeXp (Tx1u(0): n(Qxu))) =
Markov processes and continuous time Bayesian networks,
as presented by Nodelman et al. (2002).

A finite state, continuous t|me homogeneous Markov exp ZZ e T ]+ > Mz, '] n(grarju)
processX with state spac¥al(X) = {z1,...,z,} is es- u '

senuall)g a distribution over a con_tlnuum tn&n_a_e_nt vf':m  The termL x (T[X U], M[X|U]) is X's likelihood contri-
ablesX* for ¢ € [0,00). Itis described by an initial distri- ; - :

. 0 o " . butionto the overall probability of the trajectory.
bution Py and ann x n transition intensity matrixvhose

off-diagonal entrieg. ., encode the intensity of transition-
ing from statez; to statexz; and whose diagonal entries
Gu; = D ;i Qwiw;- Tis matrix describes the transient be- We want to compute answers to probabilistic queries given
havior of X*. If X, = x then it stays in state for an  some partial observations about the current trajectory. Al
amount of time exponentially distributed with parameterthough many forms of evidence are possible, we focus, for
g=. Upon transitioning X shifts to stater’ with proba-  simplicity of presentation, omterval evidencef the form
bility ¢y /qe. If PQC is the distribution overX at time 0, “Process variabl& takes the value for the duration of an
then the distribution over the state of the proc¥sat some interval[ty, t2]”. From here on, we represent the compos-

3 Expectation Propagation for CTBNs

future timet can be computed & = PY exp(Qx - t), ite of such evidence for all variables in the system in the
whereexp is matrix exponentiation. interval[ty, to] asotiit2,
A continuous time Bayesian netwd®TBN) A defines In this section, we briefly review the algorithm of Nodel-

a distribution over trajectories for a set of process vari- man et al. (2005) (NKS from now on), which forms the
ablesX. A complete trajectory can be represented as a basis for our approach. The NKS algorithm is based on the
sequence of states; of X, each with an associated dura- expectation propagation framework, which performs mes-
tion. A CTBN encodes this distribution in a factored form, sage passing in a cluster graph. In general, a cluster gsaphi
as follows: Each process variahlé¢ is associated with a defined in terms of a set of clust&ts whosescopds some
conditional Markov process- an inhomogeneous Markov subset of the variablég’; C X . Messages are passed be-
process whose intensity matrix varies as a function of theween clusters along edgés—Cy,, each of which is asso-
current values of a set of discrete conditioning variablesiated with asepsetS; , whose scope is the set of variables
U. Itis parameterized using@nditional intensity matrix ~ V;; = V; N V.. The NKS algorithm uses a cluster graph
(CIM) — Qxu — a set of homogeneous intensity matri- whose clusters correspond to subsets of process variables
cesQx 4, one for each instantiation of valuesto U. A over a particular time intervdk,, ¢2]; the clusterC; en-
continuous time Bayesian netwakk over X consists of codes a distribution over theajectoriesof the varlables
two components: amitial distribution P%, specified asa V' ; during|[ti, t2], i.e., a distribution over the continuum of



transient variableX'*, whereX € V; andt € [t1,t2]. A provide no automated way to select or refine the clusters.
sepsetS; , is used to transmit a distribution over the tra-
jectories of the variable¥ j;, in the intersection of thetwo 4  Variable Time-Scope EP

clusters. To pass a message fréjrto Cy,, the distribution

in ¢, is marginalized over the variables in the sepset, and? (IS paper, we propose an alternative cluster graph ar-

the resulting marginal is passeddp. chitecture, which allows us to much more flexibly tune our

E le3.1 Consid hain CTBN B o approximation to the rate of evolution of each cluster sep-
xample 3.1 Consider a chain — B = C —

7 e arately. In our framework, each clusi@r encodes a dis-
D, and an initial distributionPS;., = PPRPAPY.

A tribution over a set of process variabl¥s over acluster-
The natural cluster graph for this CTBN has the structure

specifidntervalZ; = [t/, t}]. A cluster can encode the dis-
AB—BC—CD. TheAB cluster, for example(,) CSUId b€ tribution over its interval using one or more piece-wise ho-
initialized to contain the CIMK 4, Qg4 and Py Py. To

mogenous Markov processes. The sepset bet d
pass a message froMdB to BC over the sepseB, we g P b dpen

d te the distributi B traiectories in th Cy is a distribution over (a subset of) the intersection be-
wou'd compute the distribution oveti rajectories N € 4 ey the transient variables in the two clusters: the vari-
cluster, marginalize to produce a distribution ovBr and

th to e cluster. | tantly. although ables inV ;;, over the intervall; N Z;,. The sepset always
pass the message fo thd cluster. Importantly, altnougn = g 65 its distribution as a single homogenous continuous-
the joint AB distribution is a homogeneous Markov pro

. R . " time Markov process. Note that for two consecutive clus-
cess overd B, the marginal distribution oveB is not typ- tersC;, C; over the same set of variabl¥s wheret), — ¢,
ically a homogeneous Markov process. the sepset is simply the point distribution ovErat time

In general, the exact marginal distribution over a subset;,.

of the variables in the network can be arbitrarily complex, |n this generalized cluster graph, even within the same
requiring a number of parameters which grows exponentime period, some clusters can span much longer intervals,
tially with the size of the network. NKS address this prob-\hereas others can be much shorter. This flexibility allows
lem by usingexpectation propagatiofEP) (Minka, 2001).  the outgoing information regarding one set of process vari-
EP is a general scheme for approximate message passiggles to be approximated fairly coarsely, using a message
in a cluster graph, where one approximates a complex mesent via a single sepset, whereas the information about oth-
sagej; . by projecting it into some fixed parametric form ers can be approximated in a much finer-grained represen-
in the exponential family, keeping the complexity of the tation by sending a message over multiple sepsets over the
messages bounded. The projection is selected to minimiz@terval.

the KL-divergence betweed;_,;, and its approximation

Sjék. In the NKS algorithm, the exponential family used Example4.1 Consider the CTBN of Example 3.1, over a

for the message representation is the class of homogeneoﬂl@1e interval[0, 6]. We might choose a cluster graph that

Markov processes, characterized by an initial distributio gas: frll with S(;;)pOeA, lZl (_)vter thle lgte2rval[(()j, 62]; 60_2 a”g
and an intensity matrix. 3 with scopeB, C' and intervals[0,2] and [2,6]; an

. 4,Cs,Cg With scopeC, D and intervals|0, 1], [1, 3], and
So far, we have described a cluster graph where al .
. L 3,6]. Between each of these uniform clusters, we have a
clusters are over a fixed time interal, ¢2]. To address

. sepse over the single time poir, and two sepsets
the general case, NKS string together a sequence of clu%- psetSy,s 9 1€ poirt, _S€P

LY 4.5 and Ss ¢ over the time point$ and 3 respectively. In
ter graphs, over consecutive intervals, to], [t2, t5), . . .. ’ ’

Messages are passed from one inteftat; 1] to another addition, we have six sepsets that connect different viiab

[ti1,tiv2] By computing a point distribution at the bound- 223?536]€é; aer;?iféfgmhgco?gaig%mtsvri\tlsf([;’ 2;3
ary pointt; ;. In this solution, the interval;, ;1] can ’ P ¥92,4: 02,51 03,5 3,6 P

have different lengths, but all of the clusters within a sm-C and mtgrvals[o, .1]’ [1,2], 2,3] and 3, 6] resp_ectwely.
. : ) Thus, the information that thB, C' clusters receive about
gle cluster graph for an interval have precisely that inter- . : o _
L . . .the A, B clusters is summarized within a single homoge-
val as their time scope. This assumption can be costly in . . .
neous Markov process; the information about theD

cases where some clusters evolve much more rapidly tha . . .
. . . . Clusters is actually a piece-wise homogeneous Markov pro-
others. In this case, the messages associated with a rapu]q% . : -
; ! . . "cess with three separate segments, potentially providing a
evolving cluster cannot be approximated well using a single . o
) : more precise approximation.
homogeneous Markov process. To obtain a high-accuracy
result, we must refine the representation of this cluster to Based on this general scheme, we now describe the de-
utilize a much finer time granularity. However, this would tails of the algorithm and the message passing steps that it
force us to refine all clusters in the graph in a similar way,takes. For the duration of this discussion, consider a par-
including clusters that evolve much more slowly. This re-ticular CTBN A with an initial distribution specified as
finement can greatly, and unnecessarily, increase the nuna- Bayesian networls® and a set of CIMQxu,. We
ber of messages required. Moreover, the NKS algorithnare interested in a particular time interya) 7', and may
requires the discretization of the clusters to be deterchinehave some partial evidene&” about the trajectory, as de-

in advance, a design decision which is far from trivial, andscribed above.



Cluster Graph Construction. Our message passing algo- of these demarcation points and the closed intervals be-
rithm applies to a very general form of a cluster graph. Astween them. To motivate the parameterization for each
described above, each clustgrhas a scope of variables closed interval, we recall from NKS the recursive defini-
V; and an associated time inter\,{a{,tg]. In addition, tion for computing probability distributions over variabl
clusters are related by sepsets, which also have a variabfates in a homogenous Markov process. For example, we
scope and a time scope. Importantly, the same pair of clugsompute a point distribution foX att given partial evi-
ters can be related by more than one sepset. Weshise dencen®” as: P(X'|0%T) = 2 P(X"'|o"") exp(Q(t —

to enumerate the sepsets relating the clugteendCy; we 1)) Az z exp(Q(t2 — 1)) P(o'27| X"). Here,Z is the nor-
useVék to denote the variable scope 6f . andZJl.k its  malizing constant representing the probability of the evi-
interval time scope. A legal cluster graph must satisfy thedence,A; ., is a zero matrix with a 1 in the row and col-
following three propertiesFamily preservation: For each ~ umn that both correspond tg ¢, andt, are time points
CIM Qx|u, and each time pointthere must exist some Within [0,7]. Thus, for each closed intervi , 5] within

¢; such thatV; D ({X} U Uy) and[tj tj] 5 ¢ thisal- & clusterC;, to allow for efficient recursive computations,
|ch$ the CIM 'io_be placed ig; at timél‘ QSimiI’arIy for Wwe maintain a data-structure that caches these components:
J . '

each conditional probability distributiof?(X° | U°) in 1. P(V}|o%") accessed as;[o'!]
the time0 Bayesian networl3’, there must exist; such 2. CIM Qy, accessed as;[Q"]
thatV,; O ({X} U U) andt] = 0. Sepset containment: 3. P(o"T|V}) accessed as;[3"2].

For each sepseijl., . relating a pair of cluster§;,C,, we  Each sepset contains the same data-structure as above rep-
have thatVé-k C V,;NVyandZi, C I, NI;. Moreover, resented using the same notation. We denote the message
) in SJlk asug.yk. A demarcation point contains messages ex-

Ullg.k = I; N 1. Running inter section: For each transient | - >«
; changed between consecutive closed sub-intervals within a

variable X, the set of clusters and sepsets containiifg . . .
cluster, similarly represented a§ for the point at timet

forms a tree. _ . .
. : in C;. Note, both demarcation points and sepsets between
In most cases, the clusters will have a uniform structure . :
. : . " tlusters of the same variable scope do not contain CIMs
over variable scopes across time, as in Example 4.1; w

have a (non-disjoint) partition of the process variablés in ?’Iﬁ?s) they only contain distributions over their pointent

subsets, and a sequence of consecutive clusters for eac To initialize the clust h data-struct beai
such subset. However, this formulation also allows a differ 0 Initialize e cluster graph data-structures, we begin
by setting all point distributiongy and vectors, tol. We

ent breakdown of process variables into clusters at differe o .
Iso initialize all CIMs to zero over their scope. Now, each

points in time, which is useful in cases where the strengt tor fromB° i ltinlied toa® | luster thats start
of the interaction between variables can vary over time. actor from=Is muitiplied o« !n a cluster thats starts
at time 0 and contains the factor’s variable scope. More-

We now initialize the cluster graph. To understand this .
. . over, the CIMs are assigned to a cluster such that, for each
step, we first need to examine closely the forms of the mea-

S . t and eachX is presentin the cluster graph exactl
sures that we obtain in a clusi€y by aggregating the fac- ' Qxjuy ISP grap y
) 7. g nce. In the case of uniformly structured cluster graphs, we
tors assigned to the cluster, the incoming messages, and the . .
; . . . simply pick, for eachX, a single cluster sequence whose
evidence. Recall that our evidence gives us observations g

the formX = x over an intervalt,, t,]. During that inter- Scope containst’ and Uy, and incorporatd x|y, into

. . each cluster in the sequence. After all the CIMs have been
val, we musteducethe system dynamics to consider only assigned, each interval may contain zero or more CIMs as-
states consistent with = x (see NKS for details). Thus, gned, y

if our cluster does not have uniform observation through-fSlgned o it. - We store any evidence about the variables

out the length of its interval, different time segments will in the scope of a cluster interval, by reducing the CIMs

have different dynamics. Different dynamics can also ariseand the corresponding point distributions. The resultég r

duced matrices, which we call/namics matricehave the
from messages. Recall that each seﬁﬁtsends the clus- ; : . )
) ’ S same form as intensity matrices, but do not necessarily sat-
terC; a message over an mter@j.l = [t1,t2], which is a

] gk X isfy the constraint that the diagonal entries are the negati
sub-interval ofZ;. Thus, the distribution oveg; is broken g of the off-diagonal entries. The dynamics matrices for

up into a sequence of closed sub-clusters, representing COB, o, interval are amalgamated to produce a single dynam-
secutive sub-intervals &;, each of which has a single co- .5 matrix for that interval that describes the evolution of
herent model for the system dynamics over its interval. Beyhe yariables in that interval. The amalgation and reduactio
tween each pair of consecutive sub-intenv@ls, (;11)) operations are carefully detailed in NKS. To briefly recap,
and(t;(i+1), tj(i+2)), we have alemarcation point;;11).  amalgamation corresponds to addition of the intensity ma-
Thus, the demarcation points are: the beginning or enghjces (after they have been expanded to apply to the same
points of any interval of evidence; the beginning or end, 5iapje scope). Reduction corresponds to zeroing out the

points of any interval of an adjoining seps®t,; and the  glements in the intensity matrix that are inconsistent with
beginning and end of the entire interzgl the evidence.

We can now define a cluster’'s distribution in terms o
Example 4.2 Continuing Example 4.1, assume that we ob-



serveB = b during [4, 5]. The distribution a; will have  The normalization constatt in both equations is the par-
the following demarcation points: the beginning @nd tition function, which makes the expected amount of time
end @) of the interval; the beginningt and end §) of the  over all states sum t — ¢;. We can calculate all of these
interval of evidence oveB; and the point2 which is both  statistics simultaneously for a#, «’, using a fifth order
the end of the sepsé} » and the beginning of the sepset Runge-Kutta numerical integration method with an adap-
Si,3. To obtain the dynamics matrix for the intervdl 5), tive step size.

for example, we amalgamate the CIi@s; 4 and Q4 as- In the general case, a cluster may have multiple sub-
signed to it, and reduce them to match the evideBiee b.  intervals. Note that the boundaries of a sepset always
Also,m [1] and, [3°] are reduced to match the evidence. correspond to demarcation points in its neighboring clus-

Message Passing.  Given an initialized cluster graph, we ters. If the sepset intervat, £,] is a single sub-interval
in Z;, then the sufficient statistics computation follows ex-

now iteratively pass messages between clusters, until con- . Lo
actly as described above. [ifi,t2] spans multiple inter-

vergence. Convergence occurs when messages betvveenI :

) . . vals, then for each intervad;;, t;;.1)] € [t1,12], we re-
neighboring clusters cease to affect the potentials. At a I0 t2]
high level, during message passing each clu@teollects ~Peat the above computation using the fa_ctorarj’ﬂ .
incoming messages from all of the sepsets. Each such me#hich are the set _Of factors ity correspondlng to the in-
sage is a distribution over the scope of the sepset. The metgrval [t1, t2]. Having computed all the sub-interval suf-
sages are combined together with the factors stored at tHi€ient statistics, we now sum up these sufficient statistics
cluster, and conditioned on the evidence. The result is afVer the different sub-intervals to obtain the overall et o
implicit description of a complex, unnormalized measureSufficient statistics for the sepset interval. We marginal-
over the trajectories of the variabl&s; throughout the in- iz the sufficient statistics over the smaller suBigbt, and
terval Z,. We now perform inference within the cluster cOmpute the KL-divergence minimizing projection for the
to compute outgoing messages over each of the cluster&Pset 'gtzns'ﬁf matrix by matching moments as follows:
sepsets. This message is the cluster distribution, madrginagyy = % Qy = Zy,;ﬁy qyy - Summing up the
ized over the sepset scope, and projected into the parametufficient statistics over the sub-intervals has naturanme
ric form of the outgoing message. ingful semantics. If the sufficient statistics over the eliff

M essage Computation. Our task now is to compute an ent sub-intervals are the same, then a computation of the

outgoing message over a sep§¢’§€, with variable scope intensity matrix for each of the sub-intervals would result

Vé‘k and intervalZ!, . When the variable scopes 6f and in the same intensity matrix. Hence, us_ing_a piece-wise hq-
C. are not the same, we call a message exchanged betweBlPgenous Markov_ process _parametenzanon would contain
them avertical message To compute the outgoing mes- the same information as a single homogenous Markov pro-
sage, we need to perform inference over the measig at CE€SS Over the er_mre interval. Alternapvely, if the ;uﬁm

and then perform a KL-divergence minimizing projéction statlstcs_var_y wldely b_etween the different sub-intervals
into the space of homogenous Markov processesb'\z@r then projection into a smgle_homogenous Markov process
andIJl.k = [t1, t2]. Consider first the simple case where thewou_Id lead to a poor appromlmau.on.- o,

entiré cluster has uniform dynami€;, and so the cluster  Finally, to compute the point distributions; ;(a™] and
boundaries exactly match the sepset boundaries, and tié ;[6%] att, andt, for the message, we simply marginal-
0n|y demarcation points are at the beginning and end of thge the distributions at those time points in the cluster.

interval, where we have factogg; andsy; , respectively. ~ Message Incorporation. We will now discuss how to
The message computation and marginalization operation icorporate a message from the sepset. Again, consider the
now identical to that described by NKS. simple case where the incoming message boundary over-

Recapping briefly, for any pair of instantiatiomsz’ to laps a single sub-interval within a cluster. We use factor
V;, defineA, . to be a matrix of the same size@s with ~ Multiplication and division to incorporate each component
zeros everywhere except for a 1 in the row correspondingf the message intG;.
to « and the column corresponding4¢. As described by When the incoming message spans multiple sub-
NKS, we can compute the projection of the distribution intointervals within the receiving cluster, we first repre-
the space of homogeneous Markov processes by computirggnt the message in the form of the receiving cluster

the expected sufficient statistics: as a set of messages over its sub-intervals. For exam-
o plev Say[tICOa tkl]a Tty [tkia tk(i+1)]a Tty [tk(nfl)a tkn] g
E[T[v] = [t1,t2] are the corresponding sub-intervals @p. For
1 [t ‘) ts each sub-intervalty;, ty41)], we computedg.ﬂk[atki],
Z ” 9" exp(Q;(t = 1)) Aa o exp(Q;(tz = 1)) dt 5§.ﬂk[5tk<i+1>] and 5§ﬂk[ch] from the newly-received
E[Mz,z'|] = messagd; ... We also computg’, , [a’], u! | [3PG+n]

andy! . [Q"+] from the old-message, , in the sepset. We

to
qum’ / P exp(Q,(t — 1)) Ay 2 exp(Q,(t2 — t))¢™ dt  obtain all of the above point distributions using standard
t1




forward and backward propagation within the interval. The dla] — atit-1 exp(QLG=b (tj; — tji—1y))
sub-intervalQ matrices are obtained by replicating the big- mi[atit] «— mi[ati] - _fj[j‘l
ger interval matrix over each sub-interval. Now, the mes- ts pi’* o]
sage for each sub-interval is incorporated independently. pi'* (o] — dla]

To maintain consistency between adjacent clusters that 2. Foreach consecutive sub-interval

are over the same variable scope and have an overlapping 5 (i, tj(”l))t],antd(tj(i*”’ttji) tm(%)
. . . i L. — f.. g
time point, we send what we call korizontal message (8] — exp(Q( i) )8
. . . . L ﬂ-.[ﬁt]‘i] — ﬂ-.[ﬁt]‘i] . B8]
between them. Finally, as new information is received J J L8]
through messages that are incorporated in sub-intervals Mt_ﬁ[ﬁ] — 88
K3

within a cluster, this information must be propagated along
the remaining cluster intervals to maintain consisteney beFor updating the distribution within a cluster, we have the
tween sub-intervals. This is similar to maintaining consis flexibility not to fully calibrate the nested cluster graph
tency across cluster boundaries since, essentially, we caMhenever we receive a message; for example, we can up-
view the sub-intervals as defining a chain-structured clusdate a subset of the sub-interval factors as needed for the
ter graph, embedded in the larger clustefas in the nested vertical message computations, saving computational cost
junction tree of Kjaerulff (1997)). We can now pass mes-Alternatively, we can incorporate multiple incoming mes-
sages over this embedded cluster graph using an exact me&ges before recalibrating.
sage passing algorithm. . o

Summary. We formally outline below the three forms ® Dynamic Repartitioning of M essages

of message passing steps we just discussed: The message over the variabls,, of sepsetS; ;. is con-

Procedure Send-Vertical-Messagg k, Sék) strained to belong to the set of homogeneous Markov Pro-
1. [ty to] < Ié.k cesses, so that a single intensity matrix is used to describe
2.8; . — mar t;\t‘zl]kk(wj) :_he elvolutti_?_n qf thef;arialtl)les ove:thr:e inter@Lr.] Adc_ii—

I . ional partitioning ofZ;; allows us to have a richer piece-
. - . ) C . : ) !
3 foreacih sub mterz@tkz ’(;t.k(;[zlz)k]i]_ [t1, t2]In Ci wise homogeneous representation over the same interval.
mg[atti] — g [alki] ph ki) To dynamically change the granularity of messages, we
Btea+n) Btei4n] - 8k [BTRCHD] consider (online during inference) the possibility of spli
Wk[ ] — ﬂ—k[ ] I Th(it1 . : l ; 1
o . w5 k8 z] ting S;  into sepsetsS; , over sub-intervalg;, , thereby
;Tk[Q H = me[ Q]+ AG—k[Q] = 115, [Q)) creating new demarcation points. Two gquestions naturally
4. g — 05—k arise: how should we choose where these new demarcation

Note that we scale the update@fby A. This is so because Points should go and how should we decide whether or not
sometimes the update may lead t@anatrix that has neg- to make any particular split? The answer to these questions
ative off-diagonal values which is not admissable by ourlS not obvious. We might base the (_jecision of cluster.splits
definition of a valid intensity matrix. This problem is not on the order of magnitude of the diagonal elements in the
peculiar to Dynamic-EP. A similar problem is encounteredcluster intensity matrices, as large values in the intgnsit
in Gaussian-EP (Minka, 2001). Hence, we find the largestnatrix mean a faster rate of evolution. This may be a good
) such that the update@ matrix is valid. This change does heuristic, but it takes into account neither the startirgy di
not affect the fixed-point of the algorithm. At convergencetribution (which has a significant impact on the relevance
(i.e., whens; . [Q] matchesué._’k[Q]) this algorithm has 0N any intensity) nor evidence received as messages from

the same fixed-point as the original algorithm. neighbors. _ . _
Procedure Send-Horizontal-Message S}j) We prowde an alternative approach, which _adds one
1 split point at a time, and makes use of the KL-divergence
1.t—1. L . -
i minimization (i.e., projection) that we must perform any-

L[t tio] = Zi way. The basis for our analysis is the following result,

2. [ty tjzl =L . . which follows from standard results for the exponential
3.bijla’] — mi[a’], 0is[B] — mi[ 5] family:
4. If (tig = tjl = t)

milot] — mj[ad] - ‘ii;j[[:‘:]] Proposition 5.1 Let P be the distribution over variables

V of clusterC for the intervalZ. defined by parameters

Else If (ti =1j2 = 1) . ne. Let Ps be a distribution over variabley”’ C V of
;18] — m; (8] - %&iﬂ sepsets for the intervalZs C Z¢ defined by parameters

5.1 ; — 0isj ' ns. If E¢[m(V)] is the expected sufficient statistics over

. ariablesV as computed fron¥, then
Procedure Update-Dist}) var pu ¢

1. Foreach consecutive sub-interval

(tj(i—1), tjs) @and(tji, tj(iv1)) IN Cs D(Fcl|Ps) = (Ec[r(V)],nc)—(Ec[r(V')], ns)—In Ze ;

Zs



whereE¢[7(V')] is computed by marginalization.

Consider splitting sepsétat timet. This would give us
two homogeneous approximatioRs, andPs, computed
as described in the previous section. Using Propositidns 5.
we can compute the “cost” (in terms of KL divergence)
of using a two-piece approximation rather than the correc
cluster distributionC% ; = D(F¢||Ps,) + D(Fc||Psy,)-

We can similarly define the cost for the single-piece ap-
proximation:Ck, = D(P¢||Ps). We would like to select
the repartition point = arg min; C%, (t).

It turns out that we can perform this computation effi-
ciently by building on properties of the fifth-order Runge-
Kutta, which is used as the key subroutine in the inference
process. The Runge-Kutta method uses an adaptive parar Figure 1:The drug-effect network
eter to decide the step size based on the size of the errors ) ) )
accumulated while performing the integration. Hence, orfn@l and the barometric pressure is steady. In Fig. 2(a), we
intervals where the errors are large, it takes smaller stepg10W part of the cluster graph with the sepsets created as a
and vice versa. At all the interval partitions formed by result of message passing. The clusters have been unrolled
the Runge-Kutta points, we can compute @¢ andQy  Overaperiod of0 hours.Co which contains variables such
by computing the intensity matrices incrementally from @SHungry, EatingandFull-Stomactchanges very rapidly
the sufficient statistics over the left and right sub-inggsy I the firsthour because the empty stomach leads to hunger
This is anO(n?) computation where is the dimension of which causes the_person to eat: This b_ehawor results in
the intensity matrix and each step of Runge-Kut@jg?®). ~ Dynamic-EP creating several splits to refine the granular-
Given the intensity matrices, and removing terms that reity at which the message is sent@ within the first few
main constant over different partitions, th , computa- ~ hours. Cs, on the contrary, evolves very slowly when the
tion simplifies to only the terms involving inner products Weather is steady, a state with relatively high persistence
over marginalized expected sufficient statistics and tire pa/AS & result, this causes no bad effects on the barometric
tition functions (when there is continuous evidence). EactPressure and it continues to remain steady. As expected,
of the inner-products are over vectors of length where ~ C+ @ndC do not further refine the message they exchange
d is the dimension of the intensity matrix over the sepsefOVer the variabl@arometer PressureTo examine the ef-
variables andl < n. The Runge-Kutta computations are fect of incoming evidence, in our second scenario, we now
performed atO(¢T), whereg is the maximum intensity obse_rve very bad weather. This adverse!y makes_the_ baro-
value inQ. Hence, this optimization i€(4d>T). metric pressure unsteady:y now dynamically splits its

In order to decide whether to actually spliatve com- ~ M€SSage 8 separate pieces as shown in Fig. 2(b).

pare the KL cost of using the one-piece approximation to DYnamic-EP also shows interesting behavior with re-
the two-piece. That is, we define a threshditdiand make ~9ard to deciding when to partition a sepset. In this split
the split if CL, — C%, > k*. Again, this computation graph_,CO first creates a partition at tinke1108 to the mes-
can be incorporated efficiently given that we have alreadp29€ it sends t@; over uo,. €1 emulates the behavior
stored the incremental sufficient statistics. After thégsp ~ PY creating a partition to the message it send€foat
message has been computed, to incorporate the messagdifR€ 2-1108. Ci in future iterations of message passing
the receiving cluster, a demarcation point is first create¢h00S€s notto further refine its message gwerover time
atZ. Then, each sepset message is incorporated indepef— 21108 until it receives a message frofp split at time

Weather
Condition

Barometer

dently. 0.489 after which it splits its message over . from time
0 — 2.1108 at0.472. Thus, the splitting behavior happens
6 Results selectively depending on how the incoming message affects

the message computation at a cluster given its own evolu-
We use an extended version of the drug effect network ofion matrix. The EP algorithm of NKS is unable to respond
NKS shown in Fig. 1 to illustrate the dynamic behavior of similarly to an incoming message — once a granularity of
this algorithm. The network models the effects of the up-computation at a given time has been selected for the entire
take of a drug and the resulting concentration of the drug irsystem, it cannot adaptively refine its messages as needed.

the bloodstream. Quantitative Results.  To investigate the computational

Illustrative Examples. In our first scenario, we model a properties of our dynamic-EP algorithm, we compared its
person that is experiencing joint pain, takes the drug to alperformance to the EP algorithm of NKS, using various
leviate the pain, is not eating, has an empty stomach, is natniform time granularities. Unfortunately, the extended
hungry, and is not drowsy. The weather condition is nor-version of the drug effect network is too large to allow ex-



Cluster 0: Eating, Hungry, Full Stomach generated only a single split point, in the sepset between
A D i the cluster{ X, X5} and{X,, X3}, at time point0.762.
‘ Sepset01: Full Stomach | With the addition of this one sepset, Dynamic-EP does as
18 S N 1 well or better than Uniform-1, except in a very small inter-
Cluster 1: Concentration, Full Stomach, Uptake val, where it does almost as well. In terms of running time,
T i TT Uniform-1 took 0.67s, Uniform-5 took 0.14s, Uniform-10
|| | | Sepset12: Concentration | took 0.05s, and Dynamic-EP took 0.08s, only slightly more
fL 1 i 11 than Uniform-10. The threshold* in Dynamic-EP con-
Cluster 2: Concentration, Barometer Pressure, Joint Pain trols the accuracy versus complexity of computation trade-
TT off. Lowering this threshold would create more splits and
‘ Sepset24: Barometer Pressure ‘ improve the accuracy in the small interval where it does not
il do as well at increased computational cost.
Cluster 4:Weather, Barometer Pressure To obtain results for larger networks where exact infer-

\ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | ence is intractable, we used an empirical approximation to

o 2 “ | | | | | the KL-divergence. For each network, we generated 100
(2) random trajectories from the network, and ran approximate
Cluster 2: Concentration, Barometer Pressure, Joint Pain inference for each one. Then, for eakhand each of 100
5 S T T time pointst € (0, 10], we computed the log-likelihood for
I | | Sepset24: Barometer Pressure | the true valuer! of X! in the trajectory, using the marginal
ORI JF I if distribution of X! in a cluster that contains it. We averaged
Cluster 4:Weather, Barometer Pressure the log-likelihood over variables and trajectories. The re
— — — } } } } } sults, graphed in Fig. 3(b), show that the performance of

Dynamic-EP is only slightly worse than those of Uniform-
(b) 1. Again, this outcome can be changed by using a lower
Figure 2:(a) Portion of drug-effect network cluster graph pulled KL-threshold. Moreover, in contrast to the coarser uniform
out to show dynamically selected partition points underjtivet ~ partitioning algorithms, it degrades much more slowly as
pain scenario.. (b) Portion of cluster graph showing pertit  the number of variables increases. Fig. 3(c) shows the av-
points for the bad weather scenario. erage running time taken by each of the approximate meth-
ods, showing that this high accuracy is obtained at a com-
putational cost which is comparable to that of Uniform-10.

, , . Since Dynamic-EP can focus computational resources
act inference for comparison. We therefore generated chai), portions of the cluster graph that are evolving faster,
_CTBNS Xp = . — Xn (_)f _d|fferent lengthsn, rang- . we wanted to explore the speed-up we achieve in networks
ing from 5 to 50 variables, in increments of 5. Each vari-\;nare there is widening gap between the rate of the fastest
able X; has three values. A child; ., generally tries o o\ oing cluster and the slowest. So, using a 30 variable
follow the value of its paren;, with some noiseXi41  chain whose top node evolved at a fast rate (max intensity
transitions an order of magnitude faster th&n when it _ 100), we made a series of networks by slowing the evo-
dlsagrees_ with;, an_d an order of ma_lgmtu_re slower _than lution rate of the remaining variables — leading to ratios
Xy when it agrees with;. We use trajectories of 10 time 1, 1 (j e all clusters evolve at the same rate)db(i.e.,
units in length, and compared four different approximation,e c|yster containing the top node evolts times faster

schemesUmform-K ., spl_lttlng Clusters_, uniformly, asin - o the others). Fig. 3(d) shows the resulting speed-up ex-
the NKS algorl.thm, with time granularlty( = 1,5,10; pressed as the ratio of Uniform-0.1 runtime over Dynamic-
and our dynamlt_:-EP algonthm with a KL threshold)cﬂ)_l. EP plotted against the series of networks with increasingly
Note that, at uniform granularity _10’ ther_e are no splits. Indivergent rates of evolution between the fastest and slowes
a.II cases, our cluster graph contained uniform clusters, co clusters. This graph represents the average speed-up over
sisting of peyrs{Xi, Xip1} _ _ 10 runs. As we expect, the figure shows an increasing ad-
We considered a scenario where we have evidence O”lVantage for Dynamic-EP over Uniform-0.1 when the clus-
at the initial time. Thus the initial state is unstable and re (grs evolve at increasingly different rates. There is a éak
sultsin rapid change. To capture this phenomenon, we negqyster rate ratio is 200 but the errorbar shows a high range
a finer-grained approximation for a short duration, then & yajyes at that point possibly due to interactions with the

coarser approximation as the distribution approaches €qUparticular KL threshhold of the runs (0.01).
librium. Fig. 3(a) presents results for a distribution other

5-variable chain, which is small enough to admita compar  Discussion and Future Work

ison to exact inference. The graph plots the KL-divergence

between the exact distribution and that given by four ap\We have presented a highly flexible cluster graph architec-
proximate methods for 100 points jf, 10]. Dynamic-EP  ture for passing messages across both time and space in



CTBNSs. We also presentéynamic-EP, a new algorithm 0.03
for approximate inference in CTBNSs. This algorithm adap-
tively assigns computational resources to parts of the in-
ference where greater accuracy is required, and can pro-
vide a much better tradeoff between computational cost
and accuracy than previous algorithms. Most importantly,
Dynamic-EP deals well with situations where some com-

o
0.025} )\
0.02}

0.015¢

KL Divergence

0.01f

ponents of the system evolve much more rapidly than oth- at=l

ers, allowing each part of the system to adaptively choose 0005 s

the time granularity most appropriate to it at that time. 0 ‘ ‘ _ | =—Dynamic spiit
0 2 4 6 8 10

There are many useful extensions of this work. Clearly, Time
we plan to test whether the computational gains on simple,
synthetic networks also manifest in real-world problems.
More broadly, our framework allows a highly flexible infer-
ence architecture, where process variables can dynaynicall
change their cluster assignments over time. Thus, if two
variables undergo a strong interaction, we can temporar-
ily put them in the same cluster. It would be interesting to
design an algorithm that dynamically determined an appro-
priate cluster structure as the process evolves. Finhbdyet
are many probabilistic models other than CTBNs where EP
is used to provide a parametric approximation to complex —iﬁi:io
messages in a cluster graph. In some cases, there may be a —0.7|L.——"Dynamic Spiit ‘ ‘ ]
need for a richer, more flexible representation of the mes- 10 Nmber of viviables  ° %0
sages (one of the key motivations for the development of
non-parametric belief propagation (Sudderth et al., 2003) (®)

The algorithm that we proposed provides a semi-parametric B ey ;
message representation. It would be interesting to explore Ll aeEs

the viability of a similar approach in other types of proba- — Dynamie Spit
bilistic graphical models. 12
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