
Reasoning at the Right Time Granularity

Suchi Saria Uri Nodelman Daphne Koller
Department of Computer Science

Stanford University
Stanford, CA 94305

{ssaria,nodelman,koller}@cs.stanford.edu

Abstract

Most real-world dynamic systems are composed
of different components that often evolve at very
different rates. In traditional temporal graphi-
cal models, such as dynamic Bayesian networks,
time is modeled at a fixed granularity, gener-
ally selected based on the rate at which the
fastest component evolves. Inference must then
be performed at this fastest granularity, poten-
tially at significant computational cost. Contin-
uous Time Bayesian Networks (CTBNs) avoid
time-slicing in the representation by modeling
the system as evolving continuously over time.
The expectation-propagation (EP) inference al-
gorithm of Nodelman et al. (2005) can then vary
the inference granularity over time, but the gran-
ularity is uniform across all parts of the system,
and must be selected in advance. In this pa-
per, we provide a new EP algorithm that utilizes
a general cluster graph architecture where clus-
ters contain distributions that can overlap in both
space (set of variables) and time. This architec-
ture allows different parts of the system to be
modeled at very different time granularities, ac-
cording to their current rate of evolution. We also
provide an information-theoretic criterion for dy-
namically re-partitioning the clusters during in-
ference to tune the level of approximation to the
current rate of evolution. This avoids the need
to hand-select the appropriate granularity, and al-
lows the granularity to adapt as information is
transmitted across the network. We present ex-
periments demonstrating that this approach can
result in significant computational savings.

1 Introduction

Reasoning about systems that evolve over time is an impor-
tant task that arises in many applications. The standard rep-
resentational frameworks for temporal reasoning — hid-
den Markov models (Rabiner & Juang, 1986) and dynamic

Bayesian networks (Dean & Kanazawa, 1989) — model
the system by slicing time into a sequence of equal-length
intervals. However, many systems are comprised of com-
ponents that change on vastly different time scales. When
modeling a person’s activity in an office environment, some
factors, such as their current job specification, evolve quite
slowly, others, such as their current project composition,at
a medium rate, and yet others, such as their current imme-
diate task, evolve very quickly (often depending on what
email they happened to get in the past few minutes). Sim-
ilar high disparities in time granularity occur when mod-
eling complex geopolitical situations, a person’s television
viewing pattern, and many more.

The framework ofcontinuous time Bayesian networks
(CTBNs)(Nodelman et al., 2002) provides a representa-
tion for structured dynamic systems that avoids the use of
a fixed time granularity. CTBNs build on the framework
of homogeneous Markov processes (Norris, 1997), which
provide a model of continuous-time evolution. CTBNs
model each process variable as a continuous-time Markov
process, whose dynamics depends on other process vari-
ables in the model. Thus, not only can variables evolve
at different rates, but the evolution rate of a single process
variable can vary over time, in response to events occurring
elsewhere in the system.

Exact inference in CTBNs involves generating an
exponentially-large matrix representing the transition
model over the entire system state. Nodelman et al. (2005)
present an approximate inference algorithm for CTBNs
which is an instance of theexpectation propagation (EP)
algorithm (Minka, 2001). In this algorithm, the system is
segmented into time intervals that can vary in their length;
within each segment, messages are passed in an EP cluster
graph, which contains clusters that represent distributions
over subsets of variables during that segment. While the
time segments can be of different length, all the clusters of
variables are broken up over the same segment boundaries.
Thus, if one cluster evolves more rapidly than others, re-
quiring a finer-grained approximation, inference in the en-
tire system will have to be approximated at that granularity.
Moreover, the granularity needs to be selected by the user,

in advance, a design choice which is far from obvious.
In this paper, we present a new EP-based algorithm

that has two important novel features. First, the algo-
rithm uses a flexible cluster graph architecture where clus-
ters, and messages between them, can have varying time
scopes. This feature allows us to fully exploit the natu-
ral time-granularity at which different sub-processes evolve
by modeling different parts of the system at different time
granularities. Second, we introduce a newdynamic-EPal-
gorithm, where the algorithm dynamically chooses the ap-
propriate level of granularity to use in each cluster at each
point in time. This level can depend both on the current ev-
idence for that subset and on messages received from other
parts of the system. Dynamic-EP utilizes an information-
theoretic criterion to automatically decide whether a clus-
ter should be encoded at a finer time granularity, and also
how it should be split. We illustrate the performance of
our Dynamic-EP algorithm on networks where different
variables evolve at different rates; our results suggest that
Dynamic-EP provides a much better time-accuracy trade-
off than using a uniform granularity.

2 Continuous Time Bayesian Networks

We begin by briefly reviewing the key definitions of
Markov processes and continuous time Bayesian networks,
as presented by Nodelman et al. (2002).

A finite state, continuous time, homogeneous Markov
processX with state spaceVal(X) = {x1, . . . , xn} is es-
sentially a distribution over a continuum oftransient vari-
ablesXt for t ∈ [0,∞). It is described by an initial distri-
butionP 0

X and ann × n transition intensity matrixwhose
off-diagonal entriesqxixj

encode the intensity of transition-
ing from statexi to statexj and whose diagonal entries
qxi

=
∑

j 6=i qxixj
. This matrix describes the transient be-

havior of Xt. If X0 = x then it stays in statex for an
amount of time exponentially distributed with parameter
qx. Upon transitioning,X shifts to statex′ with proba-
bility qxx′/qx. If P 0

X is the distribution overX at time 0,
then the distribution over the state of the processX at some
future timet can be computed atP t

X = P 0
X exp(QX · t),

whereexp is matrix exponentiation.
A continuous time Bayesian network(CTBN)N defines

a distribution over trajectoriesσ for a set of process vari-
ablesX. A complete trajectoryσ can be represented as a
sequence of statesxi of X, each with an associated dura-
tion. A CTBN encodes this distribution in a factored form,
as follows: Each process variableX is associated with a
conditional Markov process— an inhomogeneous Markov
process whose intensity matrix varies as a function of the
current values of a set of discrete conditioning variables
U. It is parameterized using aconditional intensity matrix
(CIM) — QX|U — a set of homogeneous intensity matri-
cesQX|u, one for each instantiation of valuesu to U. A
continuous time Bayesian networkN overX consists of
two components: aninitial distribution P 0

X , specified as a

Bayesian networkB0 overX, and acontinuous transition
model, specified using a directed (possibly cyclic) graphG
whose nodes areX ∈ X; UX denotes the parents ofX in
G. Each variableX ∈ X is associated with a conditional
intensity matrix,QX|UX

. The CIMs can be combined to
form a single homogeneous Markov process over the joint
state space by a process ofamalgamation.

The resulting density over complete trajectories can be
formulated within the framework of exponential families
(see Lauritzen (1996)). We define a sufficient statistics vec-
tor τ(σ) comprised of sufficient statistics for each variable
{T [x|u], M [x, x′|u]}: T [x|u] — the amount of time that
X = x while UX = u; andM [x, x′|u] — the number
of times thatX transitions fromx to x′ while UX = u.
Similarly, the natural parameters for theQX component of
the model are simply the diagonal terms and the logarithm
of the off-diagonal termsη(QX|u) = {−qx|u, ln(qxx′|u)}.
Then, the probability of the trajectory over the variables in
the model can be written as the inner product of the suffi-
cient statistics and the natural parameter vectors:

PN (σ) ∝
∏

X∈X

P 0
XLX(T [X |U], M [X |U])

LX(T [X |U], M [X |U]) =
∏

u

exp(〈τX|u(σ), η(QX|u)〉) =

exp





∑

u

∑

x

−qx|uT [x|u] +
∑

u

∑

x′ 6=x

M [x, x′|u] ln(qxx′|u)





The termLX(T [X |U], M [X |U]) is X ’s likelihood contri-
butionto the overall probability of the trajectory.

3 Expectation Propagation for CTBNs

We want to compute answers to probabilistic queries given
some partial observations about the current trajectory. Al-
though many forms of evidence are possible, we focus, for
simplicity of presentation, oninterval evidenceof the form
“Process variableX takes the valuex for the duration of an
interval [t1, t2]”. From here on, we represent the compos-
ite of such evidence for all variables in the system in the
interval[t1, t2] asσt1:t2 .

In this section, we briefly review the algorithm of Nodel-
man et al. (2005) (NKS from now on), which forms the
basis for our approach. The NKS algorithm is based on the
expectation propagation framework, which performs mes-
sage passing in a cluster graph. In general, a cluster graph is
defined in terms of a set of clustersCj , whosescopeis some
subset of the variablesV j ⊆ X. Messages are passed be-
tween clusters along edgesCj—Ck, each of which is asso-
ciated with asepsetSj,k whose scope is the set of variables
V jk = V j ∩V k. The NKS algorithm uses a cluster graph
whose clusters correspond to subsets of process variables
over a particular time interval[t1, t2]; the clusterCj en-
codes a distribution over thetrajectoriesof the variables
V j during[t1, t2], i.e., a distribution over the continuum of

transient variablesXt, whereX ∈ V j andt ∈ [t1, t2]. A
sepsetSj,k is used to transmit a distribution over the tra-
jectories of the variablesV jk in the intersection of the two
clusters. To pass a message fromCj to Ck, the distribution
in Cj is marginalized over the variables in the sepset, and
the resulting marginal is passed toCk.

Example 3.1 Consider a chain CTBNA → B → C →
D, and an initial distributionP 0

ABCD = P 0
AP 0

BP 0
CP 0

D.
The natural cluster graph for this CTBN has the structure
AB—BC—CD. TheAB cluster, for example, could be
initialized to contain the CIMsQA,QB|A andP 0

AP 0
B . To

pass a message fromAB to BC over the sepsetB, we
would compute the distribution overAB trajectories in the
cluster, marginalize to produce a distribution overB, and
pass the message to theBC cluster. Importantly, although
the joint AB distribution is a homogeneous Markov pro-
cess overAB, the marginal distribution overB is not typ-
ically a homogeneous Markov process.

In general, the exact marginal distribution over a subset
of the variables in the network can be arbitrarily complex,
requiring a number of parameters which grows exponen-
tially with the size of the network. NKS address this prob-
lem by usingexpectation propagation(EP) (Minka, 2001).
EP is a general scheme for approximate message passing
in a cluster graph, where one approximates a complex mes-
sageδj→k by projecting it into some fixed parametric form
in the exponential family, keeping the complexity of the
messages bounded. The projection is selected to minimize
the KL-divergence betweenδj→k and its approximation
δ̂j→k. In the NKS algorithm, the exponential family used
for the message representation is the class of homogeneous
Markov processes, characterized by an initial distribution
and an intensity matrix.

So far, we have described a cluster graph where all
clusters are over a fixed time interval[t1, t2]. To address
the general case, NKS string together a sequence of clus-
ter graphs, over consecutive intervals[t1, t2], [t2, t3],
Messages are passed from one interval[ti, ti+1] to another
[ti+1, ti+2] by computing a point distribution at the bound-
ary pointti+1. In this solution, the intervals[ti, ti+1] can
have different lengths, but all of the clusters within a sin-
gle cluster graph for an interval have precisely that inter-
val as their time scope. This assumption can be costly in
cases where some clusters evolve much more rapidly than
others. In this case, the messages associated with a rapidly
evolving cluster cannot be approximated well using a single
homogeneous Markov process. To obtain a high-accuracy
result, we must refine the representation of this cluster to
utilize a much finer time granularity. However, this would
force us to refine all clusters in the graph in a similar way,
including clusters that evolve much more slowly. This re-
finement can greatly, and unnecessarily, increase the num-
ber of messages required. Moreover, the NKS algorithm
requires the discretization of the clusters to be determined
in advance, a design decision which is far from trivial, and

provide no automated way to select or refine the clusters.

4 Variable Time-Scope EP

In this paper, we propose an alternative cluster graph ar-
chitecture, which allows us to much more flexibly tune our
approximation to the rate of evolution of each cluster sep-
arately. In our framework, each clusterCj encodes a dis-
tribution over a set of process variablesV j over acluster-
specificintervalIj = [tj1, t

j
2]. A cluster can encode the dis-

tribution over its interval using one or more piece-wise ho-
mogenous Markov processes. The sepset betweenCj and
Ck is a distribution over (a subset of) the intersection be-
tween the transient variables in the two clusters: the vari-
ables inV jk over the intervalIj ∩ Ik. The sepset always
stores its distribution as a single homogenous continuous-
time Markov process. Note that for two consecutive clus-
tersCj , Ck over the same set of variablesY , wheretj2 = tk1 ,
the sepset is simply the point distribution overY at time
tj2.

In this generalized cluster graph, even within the same
time period, some clusters can span much longer intervals,
whereas others can be much shorter. This flexibility allows
the outgoing information regarding one set of process vari-
ables to be approximated fairly coarsely, using a message
sent via a single sepset, whereas the information about oth-
ers can be approximated in a much finer-grained represen-
tation by sending a message over multiple sepsets over the
interval.

Example 4.1 Consider the CTBN of Example 3.1, over a
time interval[0, 6]. We might choose a cluster graph that
has: C1 with scopeA, B over the interval[0, 6]; C2 and
C3 with scopeB, C and intervals[0, 2] and [2, 6]; and
C4, C5, C6 with scopeC, D and intervals[0, 1], [1, 3], and
[3, 6]. Between each of these uniform clusters, we have a
sepsetS2,3 over the single time point2, and two sepsets
S4,5 andS5,6 over the time points1 and3 respectively. In
addition, we have six sepsets that connect different variable
scopes:S1,2 and S1,3 with scopesB and intervals[1, 2]
and[2, 6] respectively;S2,4,S2,5,S3,5 andS3,6 with scopes
C and intervals[0, 1], [1, 2], [2, 3] and [3, 6] respectively.
Thus, the information that theB, C clusters receive about
the A, B clusters is summarized within a single homoge-
neous Markov process; the information about theC, D
clusters is actually a piece-wise homogeneous Markov pro-
cess with three separate segments, potentially providing a
more precise approximation.

Based on this general scheme, we now describe the de-
tails of the algorithm and the message passing steps that it
takes. For the duration of this discussion, consider a par-
ticular CTBNN with an initial distribution specified as
a Bayesian networkB0 and a set of CIMsQX|UX

. We
are interested in a particular time interval[0, T], and may
have some partial evidenceσ0:T about the trajectory, as de-
scribed above.

Cluster Graph Construction. Our message passing algo-
rithm applies to a very general form of a cluster graph. As
described above, each clusterCj has a scope of variables
V j and an associated time interval[tj1, t

j
2]. In addition,

clusters are related by sepsets, which also have a variable
scope and a time scope. Importantly, the same pair of clus-
ters can be related by more than one sepset. We useSl

j,k

to enumerate the sepsets relating the clustersCj andCk; we
useV

l
jk to denote the variable scope ofSl

j,k andIl
jk its

interval time scope. A legal cluster graph must satisfy the
following three properties.Family preservation: For each
CIM QX|UX

and each time pointt there must exist some

Cj such thatV j ⊇ ({X} ∪UX) and[tj1, t
j
2] ∋ t; this al-

lows the CIM to be placed inCj at time t. Similarly, for
each conditional probability distributionP (X0 | U0) in
the time0 Bayesian networkB0, there must existCj such
thatV j ⊇ ({X} ∪U) andtj1 = 0. Sepset containment:
For each sepsetSl

j,k relating a pair of clustersCj , Ck, we

have thatV l
jk ⊆ V j ∩ V k andIl

jk ⊆ Ij ∩ Ik. Moreover,
∪lI

l
jk = Ij ∩Ik. Running intersection: For each transient

variableXt, the set of clusters and sepsets containingXt

forms a tree.
In most cases, the clusters will have a uniform structure

over variable scopes across time, as in Example 4.1; we
have a (non-disjoint) partition of the process variables into
subsets, and a sequence of consecutive clusters for each
such subset. However, this formulation also allows a differ-
ent breakdown of process variables into clusters at different
points in time, which is useful in cases where the strength
of the interaction between variables can vary over time.

We now initialize the cluster graph. To understand this
step, we first need to examine closely the forms of the mea-
sures that we obtain in a clusterCj by aggregating the fac-
tors assigned to the cluster, the incoming messages, and the
evidence. Recall that our evidence gives us observations of
the formX = x over an interval[t1, t2]. During that inter-
val, we mustreducethe system dynamics to consider only
states consistent withX = x (see NKS for details). Thus,
if our cluster does not have uniform observation through-
out the length of its interval, different time segments will
have different dynamics. Different dynamics can also arise
from messages. Recall that each sepsetSl

j,k sends the clus-
terCj a message over an intervalIl

jk = [t1, t2], which is a
sub-interval ofIj . Thus, the distribution overCj is broken
up into a sequence of closed sub-clusters, representing con-
secutive sub-intervals ofIj , each of which has a single co-
herent model for the system dynamics over its interval. Be-
tween each pair of consecutive sub-intervals(tji, tj(i+1))
and(tj(i+1), tj(i+2)), we have ademarcation pointtj(i+1).
Thus, the demarcation points are: the beginning or end
points of any interval of evidence; the beginning or end
points of any interval of an adjoining sepsetSl

j,k; and the
beginning and end of the entire intervalIj .

We can now define a cluster’s distribution in terms

of these demarcation points and the closed intervals be-
tween them. To motivate the parameterization for each
closed interval, we recall from NKS the recursive defini-
tion for computing probability distributions over variable
states in a homogenous Markov process. For example, we
compute a point distribution forX at t given partial evi-
denceσ0:T as:P (Xt|σ0:T) = 1

Z
P (Xt|σ0:t1) exp(Q(t −

t1))∆x,x exp(Q(t2− t))P (σt2:T |Xt). Here,Z is the nor-
malizing constant representing the probability of the evi-
dence,∆x,x is a zero matrix with a 1 in the row and col-
umn that both correspond tox; t1 and t2 are time points
within [0, T]. Thus, for each closed interval[t1, t2] within
a clusterCj , to allow for efficient recursive computations,
we maintain a data-structure that caches these components:

1. P (V t
j |σ

0:t1) accessed asπj [α
t1]

2. CIM QV j
accessed asπj [Q

t1]
3. P (σt2:T |V t

j) accessed asπj [β
t2] .

Each sepset contains the same data-structure as above rep-
resented using the same notation. We denote the message
in Sl

j,k asµl
j,k. A demarcation point contains messages ex-

changed between consecutive closed sub-intervals within a
cluster, similarly represented asµt

j for the point at timet
in Cj . Note, both demarcation points and sepsets between
clusters of the same variable scope do not contain CIMs
(i.e., they only contain distributions over their point inter-
vals).

To initialize the cluster graph data-structures, we begin
by setting all point distributions,α andβ vectors, to1. We
also initialize all CIMs to zero over their scope. Now, each
factor fromB0 is multiplied toα0 in a cluster thats starts
at time0 and contains the factor’s variable scope. More-
over, the CIMs are assigned to a cluster such that, for each
t and eachX , QX|UX

is present in the cluster graph exactly
once. In the case of uniformly structured cluster graphs, we
simply pick, for eachX , a single cluster sequence whose
scope containsX andUX , and incorporateQX|UX

into
each cluster in the sequence. After all the CIMs have been
assigned, each interval may contain zero or more CIMs as-
signed to it. We store any evidence about the variables
in the scope of a cluster interval, by reducing the CIMs
and the corresponding point distributions. The resulting re-
duced matrices, which we calldynamics matrices, have the
same form as intensity matrices, but do not necessarily sat-
isfy the constraint that the diagonal entries are the negative
sum of the off-diagonal entries. The dynamics matrices for
each interval are amalgamated to produce a single dynam-
ics matrix for that interval that describes the evolution of
the variables in that interval. The amalgation and reduction
operations are carefully detailed in NKS. To briefly recap,
amalgamation corresponds to addition of the intensity ma-
trices (after they have been expanded to apply to the same
variable scope). Reduction corresponds to zeroing out the
elements in the intensity matrix that are inconsistent with
the evidence.

Example 4.2 Continuing Example 4.1, assume that we ob-

serveB = b during [4, 5]. The distribution atC1 will have
the following demarcation points: the beginning (1) and
end (6) of the interval; the beginning (4) and end (5) of the
interval of evidence overB; and the point2 which is both
the end of the sepsetS1,2 and the beginning of the sepset
S1,3. To obtain the dynamics matrix for the interval(4, 5),
for example, we amalgamate the CIMsQB|A andQA as-
signed to it, and reduce them to match the evidenceB = b.
Also,π1[α

4] andπ1[β
5] are reduced to match the evidence.

Message Passing. Given an initialized cluster graph, we
now iteratively pass messages between clusters, until con-
vergence. Convergence occurs when messages between
neighboring clusters cease to affect the potentials. At a
high level, during message passing each clusterCj collects
incoming messages from all of the sepsets. Each such mes-
sage is a distribution over the scope of the sepset. The mes-
sages are combined together with the factors stored at the
cluster, and conditioned on the evidence. The result is an
implicit description of a complex, unnormalized measure
over the trajectories of the variablesV j throughout the in-
terval Ij . We now perform inference within the cluster
to compute outgoing messages over each of the cluster’s
sepsets. This message is the cluster distribution, marginal-
ized over the sepset scope, and projected into the paramet-
ric form of the outgoing message.

Message Computation. Our task now is to compute an
outgoing message over a sepsetSl

j,k, with variable scope

V
l
jk and intervalIl

jk. When the variable scopes ofCj and
Ck are not the same, we call a message exchanged between
them avertical message. To compute the outgoing mes-
sage, we need to perform inference over the measure atCj,
and then perform a KL-divergence minimizing projection
into the space of homogenous Markov processes overV

l
jk

andIl
jk = [t1, t2]. Consider first the simple case where the

entire cluster has uniform dynamicsQj , and so the cluster
boundaries exactly match the sepset boundaries, and the
only demarcation points are at the beginning and end of the
interval, where we have factorsφt1

V j
andφt2

V j
, respectively.

The message computation and marginalization operation is
now identical to that described by NKS.

Recapping briefly, for any pair of instantiationsx, x′ to
V j , define∆x,x′ to be a matrix of the same size asQj with
zeros everywhere except for a 1 in the row corresponding
to x and the column corresponding tox′. As described by
NKS, we can compute the projection of the distribution into
the space of homogeneous Markov processes by computing
the expected sufficient statistics:

E[T [v]] =

1

Z

∫ t2

t1

φt1 exp(Qj(t− t1))∆x,x exp(Qj(t2 − t))φt2 dt

E[M [x, x′]] =

qxx′

Z

∫ t2

t1

φt1 exp(Qj(t− t1))∆x,x′ exp(Qj(t2 − t))φt2 dt

The normalization constantZ in both equations is the par-
tition function, which makes the expected amount of time
over all states sum tot2 − t1. We can calculate all of these
statistics simultaneously for allx, x′, using a fifth order
Runge-Kutta numerical integration method with an adap-
tive step size.

In the general case, a cluster may have multiple sub-
intervals. Note that the boundaries of a sepset always
correspond to demarcation points in its neighboring clus-
ters. If the sepset interval[t1, t2] is a single sub-interval
in Ij , then the sufficient statistics computation follows ex-
actly as described above. If[t1, t2] spans multiple inter-
vals, then for each interval[tji, tj(i+1)] ∈ [t1, t2], we re-

peat the above computation using the factors inπ
[t1:t2]
j

which are the set of factors inCj corresponding to the in-
terval [t1, t2]. Having computed all the sub-interval suf-
ficient statistics, we now sum up these sufficient statistics
over the different sub-intervals to obtain the overall set of
sufficient statistics for the sepset interval. We marginal-
ize the sufficient statistics over the smaller subsetV

l
jk, and

compute the KL-divergence minimizing projection for the
sepset intensity matrix by matching moments as follows:
qyy′ = E[M [y,y′]]

E[T [y]] , qy =
∑

y′ 6=y qyy′ . Summing up the
sufficient statistics over the sub-intervals has natural mean-
ingful semantics. If the sufficient statistics over the differ-
ent sub-intervals are the same, then a computation of the
intensity matrix for each of the sub-intervals would result
in the same intensity matrix. Hence, using a piece-wise ho-
mogenous Markov process parameterization would contain
the same information as a single homogenous Markov pro-
cess over the entire interval. Alternatively, if the sufficient
statistcs vary widely between the different sub-intervals,
then projection into a single homogenous Markov process
would lead to a poor approximation.

Finally, to compute the point distributions,µl
i,j [α

t1] and
µl

i,j [β
t2] at t1 andt2 for the message, we simply marginal-

ize the distributions at those time points in the cluster.
Message Incorporation. We will now discuss how to

incorporate a message from the sepset. Again, consider the
simple case where the incoming message boundary over-
laps a single sub-interval within a cluster. We use factor
multiplication and division to incorporate each component
of the message intoCk.

When the incoming message spans multiple sub-
intervals within the receiving cluster, we first repre-
sent the message in the form of the receiving cluster
as a set of messages over its sub-intervals. For exam-
ple, say[tk0, tk1], · · · , [tki, tk(i+1)], · · · , [tk(n−1), tkn] ⊆
[t1, t2] are the corresponding sub-intervals inCk. For
each sub-interval[tki, tk(i+1)], we computeδl

j→k[αtki],
δl
j→k[βtk(i+1)] and δl

j→k[Qtki] from the newly-received
messageδj→k. We also computeµl

j,k[αtki], µl
j,k[βtk(i+1)]

andµl
j,k[Qtki] from the old-messageµl

j,k in the sepset. We
obtain all of the above point distributions using standard

forward and backward propagation within the interval. The
sub-intervalQ matrices are obtained by replicating the big-
ger interval matrix over each sub-interval. Now, the mes-
sage for each sub-interval is incorporated independently.

To maintain consistency between adjacent clusters that
are over the same variable scope and have an overlapping
time point, we send what we call ahorizontal message
between them. Finally, as new information is received
through messages that are incorporated in sub-intervals
within a cluster, this information must be propagated along
the remaining cluster intervals to maintain consistency be-
tween sub-intervals. This is similar to maintaining consis-
tency across cluster boundaries since, essentially, we can
view the sub-intervals as defining a chain-structured clus-
ter graph, embedded in the larger clusterCj (as in the nested
junction tree of Kjaerulff (1997)). We can now pass mes-
sages over this embedded cluster graph using an exact mes-
sage passing algorithm.

Summary. We formally outline below the three forms
of message passing steps we just discussed:

Procedure Send-Vertical-Message(j, k, Sl
jk)

1. [t1 t2]← Il
jk

2. δj→k ← marg[t1 t2]

Cj\V l
jk

(πj)

3. foreach sub-interval[tki, tk(i+1)] ⊆ [t1, t2] in Ck
πk[αtki]← πk[αtki] · δj→k[αtki]

µl
j,k

[αtki]

πk[βtk(i+1)]← πk[βtk(i+1)] · δj→k[β
tk(i+1)]

µl
j,k

[β
tk(i+1]

πk[Qtki]← πk[Qtki] + λ(δj→k [Q]− µl
j,k[Q])

4. µl
j,k ← δj→k

Note that we scale the update ofQ by λ. This is so because
sometimes the update may lead to aQ matrix that has neg-
ative off-diagonal values which is not admissable by our
definition of a valid intensity matrix. This problem is not
peculiar to Dynamic-EP. A similar problem is encountered
in Gaussian-EP (Minka, 2001). Hence, we find the largest
λ such that the updatedQ matrix is valid. This change does
not affect the fixed-point of the algorithm. At convergence
(i.e., whenδj→k[Q] matchesµl

j,k[Q]) this algorithm has
the same fixed-point as the original algorithm.

Procedure Send-Horizontal-Message(i, j, S1
ij)

1. t← I1
ij

1. [ti1 ti2]← Ii

2. [tj1 tj2]← Ij

3. δi→j [α
t]← πi[α

t], δi→j [β
t]← πi[β

t]
4. If (ti2 = tj1 = t)

πj [α
t]← πj [α

t] · δi→j [α
t]

µ1
i,j

[αt]

Else If (ti1 = tj2 = t)

πj [β
t]← πj [β

t] · δi→j [β
t]

µ1
i,j

[βt]

5. µ1
i,j ← δi→j

Procedure Update-Dist(j)
1. Foreach consecutive sub-interval

(tj(i−1), tji) and(tji, tj(i+1)) in Ci

δ[α]← αtj(i−1) exp(Qtj(i−1) (tji − tj(i−1)))

πj [α
tji]← πj [α

tji] · δ[α]

µ
tji

i
[α]

µ
tji

i [α]← δ[α]
2. Foreach consecutive sub-interval

(tji, tj(i+1)) and(tj(i−1), tji) in Ci
δ[β]← exp(Qtji(tj(i+1) − tji)β

tj(i+1)

πj [β
tji]← πj [β

tji] · δ[β]

µ
tji

i
[β]

µ
tji

i [β]← δ[β]

For updating the distribution within a cluster, we have the
flexibility not to fully calibrate the nested cluster graph
whenever we receive a message; for example, we can up-
date a subset of the sub-interval factors as needed for the
vertical message computations, saving computational cost.
Alternatively, we can incorporate multiple incoming mes-
sages before recalibrating.

5 Dynamic Repartitioning of Messages

The message over the variablesV jk of sepsetSj,k is con-
strained to belong to the set of homogeneous Markov Pro-
cesses, so that a single intensity matrix is used to describe
the evolution of the variables over the intervalIjk. Addi-
tional partitioning ofIjk allows us to have a richer piece-
wise homogeneous representation over the same interval.

To dynamically change the granularity of messages, we
consider (online during inference) the possibility of split-
ting Sj,k into sepsetsSl

j,k over sub-intervalsIl
jk, thereby

creating new demarcation points. Two questions naturally
arise: how should we choose where these new demarcation
points should go and how should we decide whether or not
to make any particular split? The answer to these questions
is not obvious. We might base the decision of cluster splits
on the order of magnitude of the diagonal elements in the
cluster intensity matrices, as large values in the intensity
matrix mean a faster rate of evolution. This may be a good
heuristic, but it takes into account neither the starting dis-
tribution (which has a significant impact on the relevance
on any intensity) nor evidence received as messages from
neighbors.

We provide an alternative approach, which adds one
split point at a time, and makes use of the KL-divergence
minimization (i.e., projection) that we must perform any-
way. The basis for our analysis is the following result,
which follows from standard results for the exponential
family:

Proposition 5.1 Let PC be the distribution over variables
V of clusterC for the intervalIC defined by parameters
ηC . Let PS be a distribution over variablesV ′ ⊆ V of
sepsetS for the intervalIS ⊆ IC defined by parameters
ηS . If EC [τ(V)] is the expected sufficient statistics over
variablesV as computed fromPC , then

D(PC ||PS) = 〈EC [τ(V)], ηC〉−〈EC [τ(V ′)], ηS〉−ln
ZC

ZS
,

whereEC[τ(V ′)] is computed by marginalization.

Consider splitting sepsetS at timet. This would give us
two homogeneous approximationsPSL

andPSR
computed

as described in the previous section. Using Propositions 5.1
we can compute the “cost” (in terms of KL divergence)
of using a two-piece approximation rather than the correct
cluster distribution,C2

KL = D(PC ||PSL
) + D(PC ||PSR

).
We can similarly define the cost for the single-piece ap-
proximation:C1

KL = D(PC ||PS). We would like to select
the repartition point̂t = argmint C2

KL(t).
It turns out that we can perform this computation effi-

ciently by building on properties of the fifth-order Runge-
Kutta, which is used as the key subroutine in the inference
process. The Runge-Kutta method uses an adaptive param-
eter to decide the step size based on the size of the errors
accumulated while performing the integration. Hence, on
intervals where the errors are large, it takes smaller steps
and vice versa. At all the interval partitions formed by
the Runge-Kutta points, we can compute theQ̂L andQ̂R

by computing the intensity matrices incrementally from
the sufficient statistics over the left and right sub-intervals.
This is anO(n2) computation wheren is the dimension of
the intensity matrix and each step of Runge-Kutta isO(n3).
Given the intensity matrices, and removing terms that re-
main constant over different partitions, theCKL computa-
tion simplifies to only the terms involving inner products
over marginalized expected sufficient statistics and the par-
tition functions (when there is continuous evidence). Each
of the inner-products are over vectors of lengthd2, where
d is the dimension of the intensity matrix over the sepset
variables andd < n. The Runge-Kutta computations are
performed atO(q̂T), where q̂ is the maximum intensity
value inQ. Hence, this optimization isO(q̂d2T).

In order to decide whether to actually split att̂, we com-
pare the KL cost of using the one-piece approximation to
the two-piece. That is, we define a threshold,k∗ and make
the split if C1

KL − C2
KL > k∗. Again, this computation

can be incorporated efficiently given that we have already
stored the incremental sufficient statistics. After the 2-piece
message has been computed, to incorporate the message in
the receiving cluster, a demarcation point is first created
at t̂. Then, each sepset message is incorporated indepen-
dently.

6 Results

We use an extended version of the drug effect network of
NKS shown in Fig. 1 to illustrate the dynamic behavior of
this algorithm. The network models the effects of the up-
take of a drug and the resulting concentration of the drug in
the bloodstream.

Illustrative Examples. In our first scenario, we model a
person that is experiencing joint pain, takes the drug to al-
leviate the pain, is not eating, has an empty stomach, is not
hungry, and is not drowsy. The weather condition is nor-

Eating

Full
Stomach

Concentration

Uptake

Joint
Pain

Barometer

Drowsy

Hungry

Weather
Condition

Long-term
Side effect

Prescription

Figure 1:The drug-effect network

mal and the barometric pressure is steady. In Fig. 2(a), we
show part of the cluster graph with the sepsets created as a
result of message passing. The clusters have been unrolled
over a period of10 hours.C0 which contains variables such
asHungry, EatingandFull-Stomachchanges very rapidly
in the first hour because the empty stomach leads to hunger
which causes the person to eat. This behavior results in
Dynamic-EP creating several splits to refine the granular-
ity at which the message is sent toC1 within the first few
hours. C4, on the contrary, evolves very slowly when the
weather is steady, a state with relatively high persistence.
As a result, this causes no bad effects on the barometric
pressure and it continues to remain steady. As expected,
C4 andC2 do not further refine the message they exchange
over the variableBarometer Pressure. To examine the ef-
fect of incoming evidence, in our second scenario, we now
observe very bad weather. This adversely makes the baro-
metric pressure unsteady.C4 now dynamically splits its
message to8 separate pieces as shown in Fig. 2(b).

Dynamic-EP also shows interesting behavior with re-
gard to deciding when to partition a sepset. In this split
graph,C0 first creates a partition at time2.1108 to the mes-
sage it sends toC1 over µ0,1. C1 emulates the behavior
by creating a partition to the message it sends toC2 at
time 2.1108. C1 in future iterations of message passing
chooses not to further refine its message overµ1,2 over time
0− 2.1108 until it receives a message fromC0 split at time
0.489 after which it splits its message overµ1,2 from time
0 − 2.1108 at 0.472. Thus, the splitting behavior happens
selectively depending on how the incoming message affects
the message computation at a cluster given its own evolu-
tion matrix. The EP algorithm of NKS is unable to respond
similarly to an incoming message – once a granularity of
computation at a given time has been selected for the entire
system, it cannot adaptively refine its messages as needed.

Quantitative Results. To investigate the computational
properties of our dynamic-EP algorithm, we compared its
performance to the EP algorithm of NKS, using various
uniform time granularities. Unfortunately, the extended
version of the drug effect network is too large to allow ex-

Cluster 0: Eating, Hungry, Full Stomach

Cluster 1: Concentration, Full Stomach, Uptake

Cluster 2: Concentration, Barometer Pressure, Joint Pain

Cluster 4:Weather, Barometer Pressure

Sepset01: Full Stomach

Sepset12: Concentration

Sepset24: Barometer Pressure

0 2 4

(a)

Cluster 2: Concentration, Barometer Pressure, Joint Pain

Cluster 4:Weather, Barometer Pressure

0 2 4

Sepset24: Barometer Pressure

(b)

Figure 2:(a) Portion of drug-effect network cluster graph pulled
out to show dynamically selected partition points under thejoint
pain scenario.. (b) Portion of cluster graph showing partition
points for the bad weather scenario.

act inference for comparison. We therefore generated chain
CTBNs X1 → . . . → Xn of different lengthsn, rang-
ing from 5 to 50 variables, in increments of 5. Each vari-
ableXi has three values. A childXi+1 generally tries to
follow the value of its parentXi, with some noise;Xi+1

transitions an order of magnitude faster thanX1 when it
disagrees withXi, and an order of magniture slower than
X1 when it agrees withXi. We use trajectories of 10 time
units in length, and compared four different approximation
schemes:Uniform-K — splitting clusters uniformly, as in
the NKS algorithm, with time granularityK = 1, 5, 10;
and our dynamic-EP algorithm with a KL threshold of0.01.
Note that, at uniform granularity 10, there are no splits. In
all cases, our cluster graph contained uniform clusters, con-
sisting of pairs{Xi, Xi+1}.

We considered a scenario where we have evidence only
at the initial time. Thus the initial state is unstable and re-
sults in rapid change. To capture this phenomenon, we need
a finer-grained approximation for a short duration, then a
coarser approximation as the distribution approaches equi-
librium. Fig. 3(a) presents results for a distribution overthe
5-variable chain, which is small enough to admit a compar-
ison to exact inference. The graph plots the KL-divergence
between the exact distribution and that given by four ap-
proximate methods for 100 points in[0, 10]. Dynamic-EP

generated only a single split point, in the sepset between
the cluster{X1, X2} and{X2, X3}, at time point0.762.
With the addition of this one sepset, Dynamic-EP does as
well or better than Uniform-1, except in a very small inter-
val, where it does almost as well. In terms of running time,
Uniform-1 took 0.67s, Uniform-5 took 0.14s, Uniform-10
took 0.05s, and Dynamic-EP took 0.08s, only slightly more
than Uniform-10. The thresholdk∗ in Dynamic-EP con-
trols the accuracy versus complexity of computation trade-
off. Lowering this threshold would create more splits and
improve the accuracy in the small interval where it does not
do as well at increased computational cost.

To obtain results for larger networks where exact infer-
ence is intractable, we used an empirical approximation to
the KL-divergence. For each network, we generated 100
random trajectories from the network, and ran approximate
inference for each one. Then, for eachXi and each of 100
time pointst ∈ (0, 10], we computed the log-likelihood for
the true valuext

i of Xt
i in the trajectory, using the marginal

distribution ofXt
i in a cluster that contains it. We averaged

the log-likelihood over variables and trajectories. The re-
sults, graphed in Fig. 3(b), show that the performance of
Dynamic-EP is only slightly worse than those of Uniform-
1. Again, this outcome can be changed by using a lower
KL-threshold. Moreover, in contrast to the coarser uniform
partitioning algorithms, it degrades much more slowly as
the number of variables increases. Fig. 3(c) shows the av-
erage running time taken by each of the approximate meth-
ods, showing that this high accuracy is obtained at a com-
putational cost which is comparable to that of Uniform-10.

Since Dynamic-EP can focus computational resources
on portions of the cluster graph that are evolving faster,
we wanted to explore the speed-up we achieve in networks
where there is widening gap between the rate of the fastest
evolving cluster and the slowest. So, using a 30 variable
chain whose top node evolved at a fast rate (max intensity
= 100), we made a series of networks by slowing the evo-
lution rate of the remaining variables — leading to ratios
from 1 (i.e., all clusters evolve at the same rate) to104 (i.e.,
the cluster containing the top node evolves104 times faster
than the others). Fig. 3(d) shows the resulting speed-up ex-
pressed as the ratio of Uniform-0.1 runtime over Dynamic-
EP plotted against the series of networks with increasingly
divergent rates of evolution between the fastest and slowest
clusters. This graph represents the average speed-up over
10 runs. As we expect, the figure shows an increasing ad-
vantage for Dynamic-EP over Uniform-0.1 when the clus-
ters evolve at increasingly different rates. There is a peakat
cluster rate ratio is 200 but the errorbar shows a high range
of values at that point possibly due to interactions with the
particular KL threshhold of the runs (0.01).

7 Discussion and Future Work

We have presented a highly flexible cluster graph architec-
ture for passing messages across both time and space in

CTBNs. We also presentedDynamic-EP, a new algorithm
for approximate inference in CTBNs. This algorithm adap-
tively assigns computational resources to parts of the in-
ference where greater accuracy is required, and can pro-
vide a much better tradeoff between computational cost
and accuracy than previous algorithms. Most importantly,
Dynamic-EP deals well with situations where some com-
ponents of the system evolve much more rapidly than oth-
ers, allowing each part of the system to adaptively choose
the time granularity most appropriate to it at that time.

There are many useful extensions of this work. Clearly,
we plan to test whether the computational gains on simple,
synthetic networks also manifest in real-world problems.
More broadly, our framework allows a highly flexible infer-
ence architecture, where process variables can dynamically
change their cluster assignments over time. Thus, if two
variables undergo a strong interaction, we can temporar-
ily put them in the same cluster. It would be interesting to
design an algorithm that dynamically determined an appro-
priate cluster structure as the process evolves. Finally, there
are many probabilistic models other than CTBNs where EP
is used to provide a parametric approximation to complex
messages in a cluster graph. In some cases, there may be a
need for a richer, more flexible representation of the mes-
sages (one of the key motivations for the development of
non-parametric belief propagation (Sudderth et al., 2003).)
The algorithm that we proposed provides a semi-parametric
message representation. It would be interesting to explore
the viability of a similar approach in other types of proba-
bilistic graphical models.

References

Dean, T., & Kanazawa, K. (1989). A model for reasoning
about persistence and causation.Computational Intelli-
gence, 5, 142–150.

Kjaerulff, U. (1997). Nested junction trees.UAI.

Lauritzen, S. (1996).Graphical models. Clarendon Press.

Minka, T. (2001). Expectation propagation for approxi-
mate bayesian inference.UAI (pp. 362–369).

Nodelman, U., Koller, D., & Shelton, C. (2005). Expecta-
tion propagation for continuous time Bayesian networks.
UAI.

Nodelman, U., Shelton, C., & Koller, D. (2002). Continu-
ous time Bayesian networks.UAI (pp. 378–387).

Norris, J. (1997).Markov chains. Cambridge Univ. Press.

Rabiner, L. R., & Juang, B. H. (1986). An introduction to
hidden Markov models.IEEE ASSP Magazine, 4–16.

Sudderth, E., Ihler, A., Freeman, W., & Willsky, A. (2003).
Nonparametric belief propagation.CVPR.

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

K
L

D
iv

er
ge

nc
e

∆ t = 1
∆ t = 5
∆ t = 10
Dynamic Split

(a)

10 20 30 40 50
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Number of Variables
N

or
m

al
iz

ed
 A

pp
ro

x
LL

H
 P

er
 V

ar
ia

bl
e

∆ t = 1
∆ t = 5
∆ t = 10
Dynamic Split

(b)

10 20 30 40 50
0

2

4

6

8

10

12

14

16

Number of Variables

T
im

e
(s

ec
on

ds
)

∆ t = 1
∆ t = 5
∆ t = 10
Dynamic Split

(c)

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

35

40

Fastest / Slowest Cluster Rate−of−Evolution Ratio

U
ni

fo
rm

 /
D

yn
am

ic
 R

un
tim

e
R

at
io

(d)

Figure 3:(a) KL from exact distribution for 5-chain. (b) Approx
LLH per variable in chains of increasing length. (c) Processor
time to run approximate inference for chains of increasing length.
(d) Speed-up of Dynamic-EP over Uniform-0.1 for increasingdif-
ference between rate of fastest and slowest clusters

