Lifted First-Order Belief Propagation

Parag Singla
Department of Computer

Pedro Domingos
Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{parag, pedrod@cs.washington.edu

Abstract

Unifying first-order logic and probability is a long-standi

goal of Al, and in recent years many representations com-
bining aspects of the two have been proposed. However, in-
ference in them is generally still at the level of propositib
logic, creating all ground atoms and formulas and applying
standard probabilistic inference methods to the resutiitg
work. Ideally, inference should be lifted as in first-order
logic, handling whole sets of indistinguishable objects to
gether, in time independent of their cardinality. PooleD@0

and Braz et al. (2005, 2006) developed a lifted version of
the variable elimination algorithm, but it is extremely com
plex, generally does not scale to realistic domains, and has
only been applied to very small artificial problems. In this
paper we propose the first lifted version of a scalable proba-
bilistic inference algorithm, belief propagation (loopyrmt).

Our approach is based on first constructing a lifted network,
where each node represents a set of ground atoms that all
pass the same messages during belief propagation. We then
run belief propagation on this network. We prove the correct
ness and optimality of our algorithm. Experiments show that
it can greatly reduce the cost of inference.

Introduction

Representations used in Al fall into two broad categories:
logical and probabilistic. Their strengths and weaknesses
are complementary: first-order logic is best for handling
complex relational structure, and probabilistic graphica
models for handling uncertainty. Al problems generally

(2005; 2006). (Limited lifted aspects are present in some
earlier systems, like Pfeffeat al’s (1999) SPOOK.) Poole
and Brazet al. introduced a lifted version of variable elim-
ination, the simplest algorithm for inference in probattit
graphical models. Unfortunately, variable eliminatiors ha
exponential cost in the treewidth of the graph, making it in-
feasible for most real-world applications. Scalable agpro
imate algorithms for probabilistic inference fall into &er
main classes: loopy belief propagation (BP), Monte Carlo
methods, and variational methods. In this paper we develop
a lifted version of BP, building on the work of Jaimovieh

al. (2007).

Jaimovichet al. pointed out that, if there is no evidence,
BP in probabilistic logical models can be trivially liftelde-
cause all groundings of the same atoms and clauses become
indistinguishable. Our approach proceeds by identifyimey t
subsets of atoms and clauses that remain indistinguishable
even after evidence is taken into account. We then form a
network with supernodesnd superfeaturegorresponding
to these sets, and apply BP to it. This network can be vastly
smaller than the full ground network, with the correspond-
ing efficiency gains. We show that there is a unique minimal
lifted network for every inference problem, and that our al-
gorithm returns it.

Our method is applicable to essentially any probabilistic
logical language, including approaches based on Bayesian
networks and Markov networks. We will use Markov logic
as a concrete example (Richardson & Domingos 2006). Our

contain both, and there have been many proposals to unify algorithm is also much simpler than the algorithms of Poole

the two languages, most recently in the emerging field of sta-
tistical relational learning (Getoor & Taskar 2007). Uritor
nately, at inference time these approaches typically becom
purely probabilistic, in the sense that they propositiaeal
all atoms and clauses and apply standard probabilistic-infe
ence algorithms. A key property of first-order logic is thHat i
allowslifted inference, where queries are answered without
materializing all the objects in the domain (e.g., resoluti
(Robinson 1965)). Lifted inference is potentially much mor
efficient than propositionalized inference, and extending
to probabilistic logical languages is a desirable goal.

The only approach to lifted probabilistic inference to date
was developed by Poole (2003) and extended by Bta.

Copyright(©) 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Brazet al. We present the first experimental results for
lifted probabilistic inference on real data. These, and sys
tematic experiments on synthetic problems, show thatlifte
BP can greatly outperform the standard propositionalized
version.

Background

Belief Propagation

Graphical modelgompactly represent the joint distribution
of a set of variableX = (X;,X5,...,X,,) € X as a
product of factors (Pearl 1988R(X =x) = % [, fx(xx).
where each factof is a non-negative function of a sub-
set of the variables;,, andZ is a normalization constant.
Under appropriate restrictions, the model Bayesian net-
work and Z = 1. A Markov networkor Markov random



Table 1: Example of a Markov logic network. Free variablesiarplicitly universally quantified.

English First-Order Logic Weight
Most people don’t smoke. —Smokes(x) 14
Most people don’t have cancer. —Cancer(x) 2.3
Most people aren’t friends. —Friends(x,y) 4.6
Smoking causes cancer. Smokes(x) = Cancer(x) 15
Friends have similar smoking habits Smokes(x) A Friends(x,y) = Smokes(y) 11

field can have arbitrary factors. As long X =x) > 0 Belief propagation can also be used for exact inference in
for all z, the distribution can be equivalently represented as a arbitrary graphs, by combining nodes until a tree is obthine
log-linear model P(X=x) = + exp (3, wigi(x)), where but this suffers from the same combinatorial explosion as
thefeaturesy; (x) are arbitrary functions of (a subset of) the  variable elimination.
state. .

Markov Logic

Graphical models can be representedfasor graphs ) o ) )
(Kschischang, Frey, & Loeliger 2001). A factor graph is First-order probabilistic languages combine graphicatimo
a bipartite graph with a node for each variable and factor in €ls with elements of first-order logic, by defining template
the model. (For convenience, we will consider one factor features that apply to whole classes of objects at once.
fi(x) = exp(w;gi(x)) per featurey;(x), i.e., we will not A simple and powerful such language Markov logic
aggregate features over the same variables into a single fac (Richardson & Domingos 2006). Markov logic network
tor.) Variables and the factors they appear in are connected (MLN) is a set of weighted first-order clausesTogether
by undirected edges. with a set of constants representing objects in the domain

The main inference task in graphical models is to compute of interest, it defines a Markov network with one node per
the conditional probability of some variables (the query) 9round atom and one feature per ground clause. The weight
given the values of some others (the evidence), by summing _of a fee_lture is the welght of the f|rst—o_rder clause that orig-
out the remaining variables. This problem is #P-complete, inated it. The probability of a state in such a network
but becomes tractable if the graph is a tree. In this case, the IS given by P(x) = exp (Zi wigi(x)) = 11, fi(x),
marginal probabilities of the query variables can be com- Wherew; is the weight of theith clauseg; = 1 if the ith
puted in polynomial time byelief propagatiopwhich con- clause is true, ang; = 0 otherwise. Table 1 shows an ex-
sists of passing messages from variable nodes to the corre-@mple of a simple MLN representing a standard social net-
sponding factor nodes and vice-versa. The message from aWork model. In a domain with two objects Anna and Bob,

variablez to a factorf is ground atoms will includeSmokes(Anna), Cancer(Bob),
Friends(Anna, Bob), etc. States of the world where more
poep(@) =[] #n-al) 1) smokers have cancer, and more pairs of friends have similar
henb(z)\{f} smoking habits, are more probable.

Inference in Markov logic can be carried out by creat-
ing the ground network and applying belief propagation to
it, but this can be extremely inefficient because the size of
the ground network i€)(d“), whered is the number of ob-

pf—a(T) = Z f(x) H ty—r(Y) 2) jects in the domain andis the highest clause arity. In the
~{x} yenb(H)\{z} next section we introduce a better, lifted algorithm for in-

) ference. Although we focus on Markov logic for simplicity,

wherenb(f) are the arguments of, and the sum is over  the algorithm is easily generalized to other representatio
all of these except. The messages from leaf variables are  Ajternatively, they can be translated to Markov logic anel th

initialized to 1, and a pass from the leaves to the root and a|gorithm applied directly (Richardson & Domingos 2006).
back to the leaves suffices. The (unnormalized) marginal of

each variabler is then given by[ )¢, (. Hh—a (2). EVi- Lifted Belief Propagation

dence is incorporated by settirfdx) = 0 for statesx that We begin with some necessary definitions. These assume
are incompatible with it. This algorithm can still be apglie  the existence of an MLNM, set of constant§, and ev-
when the graph has loops, repeating the message-passingdence databask (set of ground literals). For simplicity,
until convergence. Although thisopy belief propagation our definitions and explanation of the algorithm will assume
has no guarantees of convergence or of giving the correct re- that each predicate appears at most once in any given MLN
sult, in practice it often does, and can be much more efficient clause. We will then describe how to handle multiple occur-
than other methods. Different schedules may be used for rences of a predicate in a clause.

message-passing. Here we assfiowding the most widely
used and generally best-performing method, in which mes-
sages are passed from each variable to each correspondin
factor and back at each step (after initializing all varéabl !In this paper we assume function-free clauses and Herbrand
messages to 1). interpretations.

wherenb(z) is the set of factors appears in. The message
from a factor to a variable is

Definition 1 A supernodes a set of groundings of a predi-
cate that all send and receive the same messages at each step
a



of belief propagation, givetM, C andE. The supernodes o .

of a predicate form a partition of its groundings. Table 2: Lifted network construction.
A superfeaturas a set of groundings of a clause that all

send and receive the same messages at each step of beliefunction LNC(M, C, E)

propagation, giveM, C andE. The superfeatures of a inputs: M, a Markov logic network
clause form a partition of its groundings. C, a set of constants
Definition 2 A lifted networkis a factor graph composed of E, a set of ground literals

supernodes and superfeatures. The factor corresponding to, CUtPut: L, alifted network

a superfeaturg(x) is exp(wg(x)), wherew is the weight  [of éachpredicater”

of the corresponding first-order clause. A supernode and a  or €achtruth valuet in {true, false, unknowh
superfeature have an edge between them iff some ground ~ fOrm & supernode containing all groundingsfof

atom in the supernode appears in some ground clause in the with truth valuet

superfeature. Each edge has a positive integer weight. A 'eP€at . . .

minimal lifted networks a lifted network with the smallest for eachclauseC involving predicates”, . . ., P
possible number of supernodes and superfeatures. for eachtuple of supernode§Vi, . . ., Ni),

whereN; is a P; supernode
form a superfeatur@’ by joining Ny, ..., Ng
for each predicateP
for each superfeaturé” it appears in

S(P, F) — projection of the tuples i down to
the variables inP

for eachtuplesin S(P, F)
T(s, F') «— number ofF’s tuples that were

The first step of lifted BP is to construct the minimal lifted
network. The size of this network &(nm), wheren is the
number of supernodes amd the number of superfeatures.

In the best case, the lifted network has the same size as the
MLN; in the worst case, as the ground Markov network.

The second and final step in lifted BP is to apply standard

BP to the lifted network, with two changes:

1. The message from supernadi® superfeaturg becomes projected intos
:u?(_f:;)_l HhEnb(m)\{f} Hh—a (I)n(h,m), Wheren(h, x) is S(P) — UF S(P7 F)
the weight of the edge betweérandz. form a new supernode from each set of tuple§ ()

with the samél’(s, F) counts for allF’
until convergence
n(h,o) add all current supernodes and superfeaturés to
Hhenb(z) [y (). for each supernodeV and superfeaturg' in LL
The weight of an edge is the number of identical messages ~add toL: an edge betweel andF" with weightT'(s, F)
that would be sent from the ground clauses in the superfea- return L
ture to each ground atom in the supernode if BP was carried
out on the ground network. The(f,z) — 1 exponentre-  the arguments it shares wifty. Lifted network construction
flects the fact that a variable’s message to a factor excludes thus proceeds by alternating between two steps:
the factor’'s message to the variable. 1 E foat by doing ioi f thei d
The lifted network is constructed by (essentially) simulat 'O SUPErieatures by doing Joins ot their supernodes.
ing BP and keeping track of which ground atoms and clauses2. Form supernodes by projecting superfeatures down to
send the same messages. Initially, the groundings of each their predicates, and merging atoms with the same pro-
predicate fall into three groups: known true, known false Jection counts.

and unknown. (One or two of these may be empty.) Each pseydo-code for the algorithm is shown in Table 2. The

such group constitutes an initial supernode. All groungling projection counts at convergence are the weights assdciate
of a clause whose atoms have the same combination of truth \ith the corresponding edges.

values (true, false or unknown) now send the same messages To handle clauses with multiple occurrences of a predi-
to the ground atoms in them. In turn, all ground atoms that cate, we keep a tuple of edge weights, one for each occur-
receive the same number of messages from the superfeaturesence of the predicate in the clause. A message is passed
they appear in send the same messages, and constitute a newsy each occurrence of the predicate, with the correspandin
supernode. As the effect of the evidence propagates throughedge weight. Similarly, when projecting superfeatures int
the network, finer and finer supernodes and superfeatures aresypernodes, a separate count is maintained for each occur-

2. The (unnormalized) marginal of each supernode (and
therefore of each ground atom in it) is given by

created. ) . rence, and only tuples with the same counts for all occur-
(J\}f a C|<31\ijs)e. involves predggte@tl, o ,fk, andl\fj = " rences are merged.

1,...,Nk) is a corresponding tuple of supernodes, the .
groundings of the clause generated¥\are found by join- Theorem 1 Given an MLNM, set O.f constante> a_md set
ing V,,..., N, (i.e., by forming the Cartesian product of of ground literal€E, there exists a unique minimal lifted net-

the relationsV,., . . ., N4, and selecting the tuples in which ~ Work L, and algorithm LNCW, C, E) returns it. Belief

the corresponding arguments agree with each other, and with Fr(f)pagation ?‘pp"edl.t‘fj* pr(r)]duces ﬂ:je sarLle results is be-
any corresponding constants in the first-order clause)- Con !'€f Propagation applied to the ground Markov network gen-

versely, the groundings of predicafe connected to ele-  €rated byM andC.
ments of a superfeatureé are obtained by projecting onto Proof. We prove each part in turn.



The uniqueness dt.* is proved by contradiction. Sup-
pose there are two minimal lifted networks andL,. Then
there exists a ground atomthat is in supernodév; in L,
and in supernodé/s in Ly, and Ny # Na; or similarly for
some superfeatuke Then, by Definition 1, all nodes ifv;
send the same messages.ahd so do all nodes ifv,, and
thereforeN; = Ns, resulting in a contradiction. A similar
argument applies te. Therefore there is a unique minimal
lifted networkL*.

We now show that LNC returris* in two subparts:

. The networK_; obtained by LNC at any iterationis no
finer thanL* in the sense that, if two ground atoms are
in different supernodes ih;, they are in different supern-
odes inL*, and similarly for ground clauses.

. LNC converges in a finite number of iterations to a net-
work L where all ground atoms (ground clauses) in a su-

The proof that BP applied th gives the same results as
BP applied to the ground network follows from Definitions 1
and 2, the previous parts of the theorem, modifications 1 and
2 to the BP algorithm, and the fact that the number of iden-
tical messages sent from the ground atoms in a superfeature
to each ground atom in a supernode is the cardinality of the
projection of the superfeature onto the supernatle.

Clauses involving evidence atoms can be simplified (false
literals and clauses containing true literals can be dd)ete
As a result, duplicate clauses may appear, and the corre-
sponding superfeatures can be merged. This will typically
result in duplicate instances of tuples. Each tuple in the
merged superfeature is assigned a wejghtn;w;, where
m, is the number of duplicate tuples resulting from tkie
superfeature ana; is the corresponding weight. During
the creation of supernodegys, F') is now the number of

pernode (superfeature) receive the same messages during tuples projecting intes multiplied by the corresponding

ground BP.

The claim follows immediately from these two statements,
since ifLL is no finer tharl.* and no coarser, it must He.

For subpart 1, it is easy to see that if it is satisfied by
the atoms at théth iteration, then it is also satisfied by
the clauses at théh iteration. Now, we will prove sub-
part 1 by induction. Clearly, it is true at the start of the
first iteration. Suppose that a supernadesplits into Ny
and N, at thesth iteration. Leta; € N; andas € Ns.
Then there must be a superfeatéirén theith iteration such
thatT (a1, F') # T(aq, F'). SinceL; is no finer thanL*,
there exist superfeaturds; in L* such that" = (J, F}.
SinceT(al,F) 75 T(a27F), dj T(al,Fj) 75 T(a27Fj),
and thereforer; andas are in different supernodes in*.
HenceL;, is no finer tharl.*, and by induction this is true
at every iteration.

We prove subpart 2 as follows. In the first iteration each
supernode either remains unchanged or splits into finer su-
pernodes, because each initial supernode is as large as pos
sible. In any iteration, if each supernode remains unchénge
or splits into finer supernodes, each superfeature also re-
mains unchanged or splits into finer superfeatures, because
splitting a supernode that is joined into a superfeature nec
essarily causes the superfeature to be split as well. Simi-
larly, if each superfeature remains unchanged or splits int
finer superfeatures, each supernode also remains unchange
or splits into finer supernodes, because (a) if two nodes are
in different supernodes they must have different counts fro
at least one superfeature, and (b) if two nodes have differen
counts from a superfeature, they must have different counts
from at least one of the finer superfeatures that it splits, int
and therefore must be assigned to different supernodes.

Therefore, throughout the algorithm supernodes and su-
perfeatures can only remain unchanged or split into finer
ones. Because there is a maximum possible number of su-
pernodes and superfeatures, this also implies that the algo
rithm converges in a finite number of iterations. Further, no
splits occur iff all atoms in each supernode have the same
counts as in the previous iteration, which implies they re-
ceive the same messages at every iteration, and so do all
clauses in each corresponding superfeature.

weight. This can greatly reduce the size of the lifted net-
work. When no evidence is present, our algorithm reduces
to the one proposed by Jaimoviehal. (2007).

An important question remains: how to represent supern-
odes and superfeatures. Although this does not affect the
space or time cost of belief propagation (where each supern-
ode and superfeature is represented by a single symbol), it
can greatly affect the cost of constructing the lifted netwo
The simplest option is to represent each supernode or su-
perfeaturextensionallyas a set of tuples (i.e., a relation), in
which case joins and projections reduce to standard daabas
operations. However, in this case the cost of constructing
the lifted network is similar to the cost of constructing the
full ground network, and can easily become the bottleneck.
A better option is to use a more compéatensionalrepre-
sentation, as done by Poole (2003) and Bzaal. (2005;
2006)?

A ground atom can be viewed as a first-order atom with
all variables constrained to be equal to constants, and sim-
flarly for ground clauses. (For examplg(A,B) is R(x, y)
with x = A andy = B.) We represent supernodes by sets of
(v, 7y) pairs, wherex is a first-order atom and is a set of
constraints, and similarly for superfeatures. Constsaané
of the formz = y or x # y, wherex is an argument of the
atom andy is either a constant or another argument. For ex-

mple,(S(v,w,x,y,z),{w =%,y = A,z # B,z # C}) com-
actly represents all groundings ®fv, w, x, y, z) compati-
ble with the constraints. Notice that variables may be left
unconstrained, and that infinite sets of atoms can be finitely
represented in this way.

Let thedefault valueof a predicate be its most frequent
value given the evidence (true, false or unknown). Sgif
be the set of constants that appear asith@rgument oR
only in groundings with the default value. Supernodes not
involving any members d8;, ; for any argument are repre-
sented extensionally (i.e. with paifs, v) wherey contains

2Superfeatures are related, but not identical, to the parfsof
Poole and Brazt al. One important difference is that superfea-
tures correspond to factors in the original graph, whil€gzors
correspond to factors created during variable eliminatiSaper-
features are thus exponentially more compact.



a constraint of the fornx = A, whereA is a constant, for
each argument). Initially, supernodes involving members
of Sg,; are represented using@, ) pairs containing con-
straints of the formk # A for eachA € C\ SR7Z-.3 When

two or more supernodes are joined to form a superfedture

if the kth argument off”’s clause is the(j)th argument of

its jth literal, Sy, = ﬂj S.(j),i» wherer(j) is the predicate
symbol in thejth literal. F' is now represented analogously
to the supernodes, according to whether or not it involves el
ements ofS;. If F is represented intensionally, eagh )

pair is divided into one pair for each possible combination
of equality/inequality constraints among the clause’siarg
ments, which are added ta When forming a supernode
from superfeatures, the constraints in eéehy) pair in the
supernode are the union of (a) the corresponding consraint
in the superfeatures on the variables included in the supern

Link Prediction

Link prediction is an important problem with many ap-
plications: social network analysis, law enforcement,
bibliometrics, identifying metabolic networks in cells,
etc. We experimented on the link prediction task of
Richardson and Domingos (2006), using the UW-CSE
database and MLN publicly available from the Alchemy
website (Koket al. 2007). The database contains a total
of 2678 groundings of predicates lik8tudent(person),
Professor(person), AdvisedBy(personl,person2),
TaughtBy(course, person, quarter), Publication
(paper,person) etc. The MLN includes 94 formulas
stating regularities like: each student has at most one advi
sor; if a student is an author of a paper, so is her advisor;
etc. The task is to predict who is whose advisor, i.e., the
AdvisedBy(x,y) predicate, from information about paper

ode, and (b) the constraints induced by the excluded vari- authorships, classes taught, etc. The database is divitted i
ables on the included ones. This process is analogous to thefive areas (Al, graphics, etc.); we trained weights on the

shattering process of Bra al. (2005).
In general, finding the most compact representation for

smallest using Alchemy’s default discriminative learning
algorithm, ran inference on all five, and averaged the result

supernodes and superfeatures is an intractable problem. In Social Networks

vestigating it further is a direction for future work.

Experiments

We compared the performance of lifted BP with the ground
version on three domains. All the domains are loopy (i.e.,

We also experimented with the example “Friends & Smok-
ers” MLN in Table 1. The goal here was to examine how
the relative performance of lifted BP and ground BP varies
with the number of objects in the domain and the fraction of

the graphs have cycles), and the algorithms of Poole (2003) objects we have evidence about. We varied the number of
and Brazet al. (2005; 2006) run out of memory, rendering ~ People from 250 to 2500 in increments of 250, and the frac-

them inapplicable. We implemented lifted BP as an exten-
sion of the open-source Alchemy system (Katlal. 2007).

Since our algorithm is guaranteed to produce the same re-

sults as the ground version, we do not report solution gualit

Diagnosing the convergence of BP is a difficult problem; we
ran it for 1000 steps for both algorithms in all experiments.
BP did not always converge. Either way, it was marginally

tion of known people/ F' from 0 to 1. AK F' of r means
that we know for a randomly chosenfraction of all peo-
ple (a) whether they smoke or not and (b) who 10 of their
friends are (other friendship relations are still assunodakt
unknown). Cancer(x) is unknown for allx. The people
with known information were randomly chosen. The whole
domain was divided into a set of friendship clusters of size

less accurate than Gibbs sampling. The experiments were 50 each. For each known person, we randomly chose each

run on a cluster of nodes, each node having 3.46 GB of RAM
and two processors running at 3 GHz.

Entity Resolution
Entity resolution is the problem of determining which ob-

friend with equal probability of being inside or outsideithe
friendship cluster. All unknown atoms were queried.

Results
Results on all domains are summarized in Table 3. The

servations (e.g., records in a database) correspond to theFriends & Smokers results are for 1000 people &nkl =

same objects. This problem is of crucial importance to many

0.1; the Cora results are for 500 records. All results for

large scientific projects, businesses, and governmentagen Cora 3nd Friends & Smokers are averages over five random
cies, and has received increasing attention in the Al com- SPlits.” LNC with intensional representation is comparable

munity in recent years. We used the version of McCallum’s
Cora database available on the Alchemy website (&tod.
2007). The inference task was to de-duplicate citations, au
thors and venues (i.e., to determine which pairs of citation
refer to the same underlying paper, and similarly for author
fields and venue fields). We used the MLN (formulas and
weights) used by Singla and Domingos (2005) in their ex-
periments. This contains 46 first-order clauses stating reg
ularities such as: if two fields have high TF-IDF similarity,

they are (probably) the same; if two records are the same,

their fields are the same, and vice-versa; etc.

3In practice, variables are typed, a@tlis replaced by the do-
main of the argument; and the set of constraints is only dtonee,
and pointed to as needed.

in time and memory with the extensional version on Cora
and UW-CSE, but much more efficient on Friends & Smok-
ers. All the results shown are for the intensional represent
tion. LNC is slower than grounding the full network, but BP
is much faster on the lifted network, resulting in betterasm

in all domains (by two orders of magnitude on Friends &
Smokers). The number of (super) features created is much
smaller for lifted BP than for ground BP (by four orders of
magnitude on Friends & Smokers). Memory (not reported
here) is comparable on Cora and UW-CSE, and much lower
for LNC on Friends & Smokers. Figure 1 shows how net-
work size varies with the number of people in the Friends

4For Cora, we made sure that each actual cluster was either
completely inside or outside each split.



Table 3: Time and memory cost of ground and lifted BP.

Domain Time (in seconds) No. of (Super) Features
Construction BP Total
Ground]| Lifted | Ground| Lifted | Ground]| Lifted Ground Lifted
Cora 263.1 | 1173.3] 12368.4| 3997.7| 12631.6| 5171.1| 2078629 295468
UW-CSE 6.9 22.1| 1015.8| 602.5| 1022.8| 624.7 217665 86459
Friends & Smokerg  38.8 89.7 | 10702.2 4.4 10741.0 94.2 | 1900905 58
16407 . . . . Acknowledgments
U * This research was funded by DARPA contracts NBCH-
8 le+06} + E D030010/02-000225, FA8750-07-D-0185, and HRO0011-07-C-
§ . - 0060, DARPA grant FA8750-05-2-0283, NSF grant 11S-0534881
®100000fF * 7 and ONR grant N-00014-05-1-0313. The views and conclusions
E'; contained in this document are those of the authors and cinol
g 10000 ¢ 7 be interpreted as necessarily representing the officiatips| ei-
> ther expressed or implied, of DARPA, NSF, ONR, or the United
»n 1000 F E
= States Government.
° 100k ] References
§ O de S. Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
10 F Ground -+ 1 probabilistic inference. liProc. IJCAI-05 1319-1324.
Lifted —— de S. Braz, R.; Amir, E.; and Roth, D. 2006. MPE and par-
1 ' : : : tial inversion in lifted probabilistic variable eliminati. InProc.
0 500 1000 1500 2000 2500 AAAI-06 1123-1130.
No. of Objects Getoor, L., and Taskar, B., eds. 200ntroduction to Statistical
Figure 1. Growth of network size on Friends & Smokers  Relational Learning MIT Press.
domain. Jaimovich, A.; Meshi, O.; and Friedman, N. 2007. Template
) ) ) based inference in symmetric relational Markov random $ield
& Smokers domain, folk F' = 0.1. The lifted network is In Proc. UAI-07 191-199.

always much smaller, and the difference increases markedly ok s.: Sumner, M.; Richardson, M.; Singla, P.; Poon, Hwto
with the number of objects (note the logarithmic scale on  p; and Domingos, P. 2007. The Alchemy system for statistical
the Y axis). The ground version ran out of memory for more  relational Al. Tech. Rept., Dept. Comp. Sci.& Eng., Univ. 8ha
than 1500 people. We also variédF' while keeping the ington, Seattle, WA. http://alchemy.cs.washington.edu.
number of people constant at 1000 (results not shown due to  Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001ct6a
lack of space). The lifted network is always smaller than the graphs and the sum-product algorithntEEE Transactions on
ground one by at least four orders of magnitude, rising to six  Information Theory}7:498-519.

for extreme values oK F'. Pearl, J. 1988.Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inferencéorgan Kaufmann.
Conclusion and Future Work Pfeffer, A.; Koller, D.; Milch, B.; and Takusagawa, K. T. 189

Spook: A system for probabilistic object-oriented knovgedep-
resentation. IfProc. UAI-99 541-550.

Poole, D. 2003. First-order probabilistic inference. Rroc.
1JCAI-03 985-991.

Richardson, M., and Domingos, P. 2006. Markov logic network
Machine Learning2:107-136.

Robinson, J. A. 1965. A machine-oriented logic based on the

We presented the first scalable algorithm for lifted proba-
bilistic inference, and the first application of these tolrea
world domains. Our algorithm constructs a network of su-
pernodes and superfeatures, corresponding to sets of nodes
and features that are indistiguishable given the evidearwt,
applies belief propagation to this network. Our experiment : -
illﬂztrate the e?ﬁcign?:y gains obtainable by this mepthod. rgsoluﬂon pnnmple.]gurnal of the ACMZ_'23__4_1' _ .

. . . . Singla, P., and Domingos, P. 2005. Discriminative trainifig

Directions for future work include: clustering atoms to  \arkov logic networks. IProc. AAAI-05 868—873.

further compress the repre_sentatlon of supernodes; merg- Singla, P., and Domingos, P. 2006. Memory-efficient infeeen
Ing II_’]C_)deS that pass aphprtox'”t‘ﬁtely t]t‘e same m‘iﬁszge?; 9€N-in relational domains. IProc. AAAI-06 488-493.
eralizing our approach to other inference methods (e.g., < : ST
MCMC) and tasks (e.g., MPE); fully unifying lifted BP and  mata 1nbroe. DALOT S0 370 o 1001e In nfinie do
resolution; applying lifted BP to infinite domains (Singla & Wellman, M.: Breese, J. S.: and Goldman, R. P. 1992. From

Domingos 2007); extending lifted BP to subsume lazy in-  ynowledge bases to decision modelknowledge Engineering
ference (Singla & Domingos 2006) and knowledge-based Review7.

model construction (Wellmaat al. 1992); using lifted BP
in learning; applying it to other domains; etc.



