
Task Assistant: Personalized Task Management for Military Environments

Bart Peintner, Jason Dinger, Andres Rodriguez, Karen Myers
SRI International, 333 Ravenswood Ave. Menlo Park, CA USA

peintner@ai.sri.com, jason.dinger@sri.com, acr@ai.sri.com, myers@ai.sri.com

Abstract

We describe an AI-enhanced task management tool devel-
oped for a military environment, which differs from office en-
vironments in important ways: differing time scales, a focus
on teams collaborating on tasks instead of an individual man-
aging her own set of diverse tasks, and a focus on tasklists and
standard operating procedures instead of individual tasks. We
discuss the Task Assistant prototype, our process for adapting
it from an office environment to a military one, and lessons
learned about developing AI technology for a high-pressure
operational environment.

Introduction
The problem of task management is ubiquitous. Workers in
a wide range of fields must address the problems of know-
ing which tasks to perform, how to perform those tasks, how
and when to delegate tasks, and how to deal with task over-
load. The military is no exception. Command and control
staff follow Standard Operating Procedures (SOPs) and Tac-
tics, Techniques and Procedures (TTPs) when responding to
events in theater, when planning or executing missions, and
when developing reports.

Given the universality of the task management problem,
a significant number of task and To Do management ap-
proaches and systems have been developed over the years
(see Related Work section). However, most have been tar-
geted toward office environments and are not well suited to
military environments. Given the high level of uncertainty
and pressure in military environments, the need for effec-
tive and adaptive task management assistance goes beyond
simply increasing productivity: accomplishing tasks more
quickly or having fewer tasks drop through the cracks may
produce immeasurable benefits. Other high-pressure envi-
ronments, such as in hospitals, have task management needs
similar to the military. A recent study has shown that when
checklists are used during surgery, complications and deaths
are reduced significantly (Haynes et al. 2009). Similarly,
checklists have been shown to reduce the number of infec-
tions in an ICU (Pronovost et al. 2006).

In this paper, we describe Task Assistant, a lightweight
Java-based workflow management tool specifically designed

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to assist users operating in military environments. The sys-
tem manages tasklists, which are hierarchical groups of
tasks that collectively achieve a goal. Task Assistant pro-
vides the ability to quickly create tasklists, access and cus-
tomize tasklists created by others, and link functionality in
other systems to tasks within each tasklist. Task Assistant
assists the user in several ways: learning models that sug-
gest which tasks should be delegated and to whom, learning
models that link individual tasks to related automated proce-
dures, and mining a library of existing tasklists for ones that
can expand upon or replace a user’s current tasks.

Task Assistant builds on Towel (Conley and Carpenter
2007), an earlier system developed at SRI designed for of-
fice environments. We describe our process for adapting the
system to the military context, and present lessons learned
from developing AI-based features for military users.

Differences from Office Environment
For any user-centric software tool to be effective, its use
must align well with the current work practices of its users.
In our case, this was a difficult problem, given that we, as
technology developers, did not have first-hand experience
in the target environment or even of the tasks typically per-
formed. As we will describe later, we addressed this prob-
lem through frequent interaction with subject matter experts
(SMEs). Much of the interaction involved the SMEs sharing
scenarios and critiquing our planned features and implemen-
tations. One result of this interaction was an understanding
of the important differences between task management in
office environments and military environments.

First, the time scale is different. Deadlines are typically
measured in hours rather than days. In an office environ-
ment, new tasks that are due in only a few hours rarely make
it onto the To Do list: they are simply executed. In an Army
environment, a notification about a downed aircraft implies
tens of tasks, many of which are due in minutes.

Second, the focus is less on a single user managing di-
verse tasks and more on teams performing cohesive col-
lections of tasks. Although the latter may evoke the term
project management, the smaller time scale and diminished
relative importance of assigning resources place the problem
outside the reach of current project management tools.

Third, tasklists are the primary focus, not tasks. Military
environments maintain a very large number of SOPs and



Table 1: Capabilities available to the User (U:) and performed by Task Assistant (T:)

TTPs for the purposes of training and guiding responses to
different events and planning scenarios. These can be very
naturally represented as tasklists; encoding them in a soft-
ware tool brings them to life, allowing easy access and cus-
tomization to different environments and command styles.

In general, these differences significantly affect the re-
quirements for a task management system. Although lessons
from office-based task managers transfer in part, new prin-
ciples and strategies are needed.

Task Assistant
Task Assistant is a lightweight Java-based task manage-
ment tool designed to assist users operating in military en-
vironments, giving those users the ability to quickly create
tasklists, access and customize tasklists created by others,
and link functionality in other systems to individual tasks.
These abilities and more are listed in Table 1 and explained
below. We illustrate Task Assistant using sample Army re-
sponse procedures for a Vehicle-Borne Improvised Explo-
sive Device (VBIED) event and the sighting of a High Value
Target (HVT).

Basic task and tasklist management. Figure 1 dis-
plays the Task Assistant interface, showing a “VBIED at-
tack” tasklist extracted from an Army Brigade Combat Team
(BCT) battle drill. Below the menu bar is a set of tabs, each
of which represents an active tasklist. Each tasklist con-
sists of a hierarchy of tasks or information items. Each task
consists of a textual summary, a task type (task, informa-
tion, branch point) and several optional properties, including
deadlines, durations, a detailed description, and the role of
the person who should execute the task. For example, the
first task in the tasklist in Figure 1 has the summary “Unit
response to explosive incident”, a deadline in 18 minutes,
and five subtasks.

Notice the file attachment for the task, “Cdr briefing.ppt”.
Multiple files or URLs can be attached to a task and opened
with a single click. This allows the context of the task to be
accessible when the task is executed.

Figure 1: Task Assistant interface.

Creating or modifying a tasklist is fast and intuitive. We
chose a PowerPoint-style interaction because most users are
familiar with the keystrokes for creating new lines and in-
denting them (making the task a subtask of the one above it).
In addition, Task Assistant supports cut and paste from bul-
leted lists in Office applications, PDFs, and the web, making
it easy to create tasklists from existing sources.

The File menu contains options that allow a user to save
and load tasklists from a personal or shared library on a
server. The current library encodes approximately 60 Army
SOPs and doctrinal tasklists. About half were created by
cutting and pasting from Army manuals and half were cre-
ated by SMEs and retired Army commanders during the
buildup to a large demonstration for the DARPA Personal-
ized Assistant that Learns program. Tasklists created using
Army manuals were built in about 5 minutes. For those built
without existing sources, the time required is only slightly



Figure 2: Connections between a Task Assistant client and
tasklist libraries, external systems, and other clients.

Figure 3: Task Assistant allow users to view tasklists of oth-
ers, delegate tasks to others, and broadcast tasklists to others.

longer than creating the corresponding Word document. The
current library has no structure; the next version will allow
tags to be added to tasklists, which will enable different units
to maintain their own versions of each tasklist.

The connection between a Task Assistant client and the
tasklist libraries is shown in Figure 2, along with connec-
tions to external systems and other clients.

Collaboration and delegation. If a network connection
is available, each Task Assistant client will announce its
presence to other clients. Messaging enables the collabo-
ration and delegation features of Task Assistant, which al-
low multiple users to build or execute a shared tasklist. The
collaboration feature has two related elements. First, a user
can delegate a set of tasks in a particular tasklist to another
user. This results in the second user getting a new tab in his
Task Assistant showing the original tasklist. The delegated
tasks appear normally, but all others are annotated with a
lock icon, indicating that another user (the user who dele-
gated the tasks) has control of those tasks. Figure 3 shows an
example where this user has been delegated a set of tasks in
the “VBIED attack” tasklist. The “eye” icon in the tab of this
tasklist indicates that this is a view into another’s tasklist.

Any changes to the delegated tasks–attached files,
changed properties–are immediately reflected on the Task
Assistant client for the user who delegated the tasks.
Changes to locked tasks are not allowed. However, a user
may right-click on any locked task to request control of it,
essentially asking the owner to delegate the task to him.

Monitor status of tasks. In Figure 1, the first task has
five subtasks, one of which is marked as completed. Its

completion is reflected in the progress bar to the left of its
parent’s deadline indicator, which shows that the deadline
is in 18 minutes. The color of the progress bar indicates
how recently it has been updated, giving the person who
delegated the tasks a sense of whether the information is up
to date. A green color denotes a recent update; brown de-
notes staleness; black denotes a significant amount of time
since last update. We call this the ‘avocado model’, which
is distinguished from the more universally known stoplight
model used for the background color of the deadline text.
Green, amber, or red indicates whether the time remaining
is enough to accomplish the incomplete tasks.

These indicators are designed so that a user who delegates
many tasks (e.g., a commander) can sense which tasks need
attention with a quick glance down the right side of the UI.
Any part of the indicator that is not green indicates that a
task is falling behind or that information is out of date.

Integrates with other systems. Task Assistant was
part of an effort to incorporate learning by demonstration
technology into the Army’s Command Post of the Future
(CPOF) system and the Air Force’s Web-enabled Temporal
Analysis System (WebTAS). The technology allowed users
to click a “Watch me” button in each of these applications,
demonstrate a procedure, and then instruct the technology to
generalize the sequence of actions into a reusable procedure
(Garvey et al. 2009). As a result, the user could “teach” the
tools to execute automated procedures.

Figure 4: Task Assistant allows links and procedures in ex-
ternal programs to be attached to tasks.

Task Assistant integrated with both of these systems.
Each system provided external applications with access to
the list of their procedures and the ability to execute them
remotely. Thus, a Task Assistant user had the ability to at-
tach automated procedures from both CPOF and WebTAS
to individual tasks in a tasklist. This significantly advanced
Task Assistant’s ability to connect context to each executing
task. Not only could the user attach the products needed to
perform the task (e.g., Word and PowerPoint files, URLs),
the user could attach links to procedures that help execute
the task. Figure 4 shows an example. Note that two of the
tasks have links to CPOF procedures attached.



The title bar of the VBIED Attack tasklist in Figure 4 also
contains the tag “triggered by CPOF”, which indicates that
the tasklist was inserted in response to an event in CPOF
(other tags include “manually inserted”, “delegated from
User X”, and “owner: User X”). Within CPOF, users can set
triggers, which consist of a condition and procedure. When-
ever the condition is met (e.g., when an element is added to
a given area of a map or when an event of a particular type is
added to a table), the procedure is executed. The procedure
can be a learned CPOF procedure or it can be a command
sent to Task Assistant, such as “Insert VBIED tasklist”. This
enables Task Assistant to be responsive to the environment.
Rather than having the user search for a tasklist when an
event occurs, the tasklist can load automatically.

Suggestions. One aspect that sets Task Assistant apart
from other To Do and task managers is its ability to provide
suggestions to the user in an unobtrusive manner (as would
a human assistant). Task Assistant provides three types of
automated recommendations: suggestions for inserting ex-
isting tasklists to expand a task; suggestions for whom to
delegate tasks; and suggestions for external procedures to
link to tasks. The first of these relies on similarity metrics
to identify potential suggestions; the latter two exploit ma-
chine learning technology to develop recommendation mod-
els derived from prior tasklist executions. Each time the user
adds or modifies a task, Task Assistant queries its libraries or
learned models to see whether any of these three suggestions
is warranted for the task.

Figure 5 shows examples of all three of these suggestions.
First, note the light bulb icon to the right of the task “Staff
Checklist”, toward the bottom of the figure. The light bulb
icon indicates that Task Assistant has a suggestion for the
user. The figure shows the result of clicking on the light
bulb: one or more options are listed for tasklists from the
library that are similar to the highlighted task. This sug-
gestion for inserting a tasklist provides value in at least two
situations. The most common is when the user is starting
to build a large group of tasks, e.g., a doctrinal step such as
“Mission Analysis”. Rather than requiring the user to type in
all steps in this process, Task Assistant helps the user make
use of the fact that someone else has already created this
tasklist. Simply clicking on the “Insert Mission Analysis”
menu item replaces the existing task with the full tasklist,
which can then be customized. The second situation is when
a user is delegated a task from a higher echelon. From the
perspective of the higher echelon, it is a single task, but the
task is a hierarchy of tasks from the perspective of the user.
Task Assistant will help the user find the tasklist that corre-
sponds to the high-level task. In both cases, the user can use
the tasklist as is or customize it to suit the situation at hand.
Currently, Task Assistant does not personalize these sugges-
tions to a particular user, but we plan to add this capability.

Second, the task “Get HVT background data” in Figure 5
shows a light bulb icon below the summary text and to the
left of a link called“Delegate to Intel T”. Clicking on this
link will delegate this group of tasks to the Intel expert in the
command center. (Without this suggestion, the user would
have to right-click on the task, select Delegate to ...
and then find the person desired.) If the user decides this

Figure 5: Task Assistant provides suggestions for inserting
existing tasklists to expand a task; for whom to delegate
tasks; and for which external procedures to link to tasks.

suggestion is poor, he can click the trash can icon to the right
of the suggestion to remove it. This suggestion is based on
a learned model that uses properties of each task to predict
the relevance of each task to other known users. Using man-
ual delegation actions and suggestion removal actions, Task
Assistant learns which tasks to delegate and to whom.

Finally, note the CPOF procedure “Plan egress route” cir-
cled in Figure 5. Procedures from CPOF or other applica-
tions can be attached or removed using the right-click menu.
However, Task Assistant automatically attaches a procedure
when its learned model indicates that the procedure is ap-
propriate for the task. Using both string matching and the
manual attachment and removal of procedures, Task Assis-
tant learns which procedures to attach to which tasks. In
some cases, this simply saves the time it takes for a user to
navigate the right-click menu and the library of procedures;
given hundreds of procedures, this can be significant. Of
greater value, perhaps, is when Task Assistant can help find
procedures the user did not know existed, e.g., when a mem-
ber is new to a team or is in training.

Learning Methods
As we will explain below, our target users do not give special
credence to “AI features”; they evaluate technology mostly
on ease of use and contribution toward critical tasks. This
viewpoint imposed three requirements for our learning ap-
proach: (1) training the learners must require no additional
effort, (2) “using” the learning must not interfere with the
interaction or require additional steps, and (3) the system ac-
tions based on learning must be acceptable before any learn-
ing occurs. These requirements preclude initial information-
gathering steps and explicit feedback requests to the user
(e.g., “Was this a good suggestion?”). They also forced us
to choose techniques in which the initial model would pro-
vide value, or at least not reduce value.

Thus, our initial ideas for more knowledge-intensive
learning techniques were not pursued. In particular, we had
considered requiring the user to enter relationships and pro-
file information to aid in delegation learning. For procedure
attachment learning, we considered interface elements that
would allow the user to tag and rate automated procedures.



In the end, we chose a scheme that relied solely on the prop-
erties of the tasks and a single (optional) user profile entry:
a list of the user’s roles.

The techniques for learning to whom to delegate tasks and
which procedures to attach to each task are similar. Both use
what is essentially a Naive Bayes classifier that treats each
word in the summary and description as a feature. We main-
tain a model for each possible prediction class (e.g., a person
or a procedure). Each model consists of a set of weighted
support objects, which are elements of tasks, including par-
ticular words and particular property values for each task.
Each time the user creates a connection (e.g., delegates a
task to a person) or removes a connection (e.g., removes a
procedure from a task), the weights in the model of the class
in question are updated. Thus, in keeping with the first re-
quirement, learning is based on implicit feedback gleaned
from essential user actions: no additional steps or clicks are
needed to train the learners.

For example, if the user delegates to the Intel operator
a task called “Get HVT background data” with descrip-
tion “Retrieve all data related to the HVT and associations”,
the model for class “Intel” is retrieved and the weights for
each (nonfiller) word in the summary and description are in-
creased. Conversely, if Task Assistant suggests that a task
should be delegated to Intel but the user disagrees, the user
has the option to delete the suggestion, thus decreasing the
weights of that task’s support objects for Intel. Over time,
after many weight increases and decreases, the model for a
class will reflect the types of words used in tasks delegated
to Intel. The automatic appearance of the suggestion and
the optional nature of using it or discarding it satisfies the
second requirement listed above.

The model for each prediction class is initialized with a
set of words that describe it. For automated procedures,
we had access to its user-created name and thus automati-
cally added those words to the model with significant initial
weight. For delegation targets, we seeded the model with
their names and with their list of roles (each client shares its
roles with other clients).

To make predictions for a given task, the weights for sup-
port objects in the task are summed for each prediction class.
If the largest score for all classes is above a threshold, the
class with the largest score is suggested.

The mechanism for updating weights in each model was
more art than science. Each training example was given a
weight allocation that was different for positive and nega-
tive examples and different for each learning problem. The
allocation was spread over the words extracted from the task.
Thus, for tasks containing only a few words, each word was
given greater weight than for tasks with many words.

The first result of this approach was that suggestions made
prior to any learning made intuitive sense to the user: the
words in the task matched the words in the procedure or the
role of the delegatee. The second result was that the effect
of learning was evident very quickly: after a user delegates
the first task containing the words “get” and “info” to the in-
telligence officer, the very next task containing those words
will have the suggestion “Delegate to Intel” directly below
it. Together, these results satisfy the third requirement of our

learning scheme: the system actions based on learning must
be acceptable from the start.

This approach worked well in practice, although it was not
thoroughly evaluated in a real-world setting. In our cases, a
maximum of about ten users was available to accept delega-
tions, and the library of possible procedures was in the tens,
not hundreds that are possible in a full deployment.

Development Approach and Lessons Learned
Because our team did not have first-hand experience in
Army environments, we developed Task Assistant in tight
collaboration with Army personnel, current and retired, in-
teracting with one or more SMEs about every three weeks
on average. This interaction was crucial: most of our ini-
tial research agenda for Task Assistant was gradually sup-
planted by another through suggestions and critiques from
the SMEs. In general, the advanced functionality we had
planned would not have value until we tackled the problem
of integrating Task Assistant into the work practices of the
particular Army unit type, a Brigade Combat Team (BCT).

Initially, we simply demonstrated our baseline function-
ality (essentially, a personal task manager for office work-
ers) to SMEs and asked them to brainstorm on how such a
tool might be used. Given this feedback, we began adding
the features that required little effort and mocking up more
development-intensive features. Using the new version, we
then trained the SMEs on Task Assistant and presented the
mocked-up features and options for changing them. This
proved extremely valuable: hands-on experience for the
SMEs solidified their opinions, made them more excited
about the possibilities, and uncovered aspects of the tool
they found annoying or simply misaligned with how they
do business (e.g., they did not want to know the time a task
was due, they wanted to know how much time was left).

The difficulty arose when our SMEs had differing opin-
ions. For example, one SME wanted tasks presented as text,
whereas another preferred them on a timeline. Digging into
these differences helped us to better understand the domain.
In this case, the two SMEs saw Task Assistant being used
for different purposes: one for planning a mission, the other
for executing it. This was common in our experience. Given
the flexibility of the tool, many SMEs intended it for differ-
ent purposes; typically, the purpose for which they intended
it matched their experience or role when on active duty.

User Response
Throughout the one-year development period, we had the
opportunity to give demonstrations and receive feedback
from numerous current and former Army personnel. We
were met with near unanimous excitement for the tool, even
before the AI-related features were demonstrated. This
speaks to the need for the core functionality provided by
Task Assistant. The AI features excited them as well, but
only after being demonstrated in the domain of interest. Be-
ing unaccustomed to assistive or personalized features, they
were skeptical of their value until it was demonstrated. The
key aspect that won them over was that the personalization
added value without requiring extra effort. They demanded



simplicity above efficiency of use, keyboard shortcuts, and
having multiple ways to achieve the same result.

Most of our user involvement was in the context of prepar-
ing for a large evaluation in December 2008 of technologies
within DARPA’s Personalized Assistant that Learns (PAL)
program. The evaluation compared the performance of
two 7-person teams monitoring and commanding an Army
brigade in realistic scenarios, operating with and without
PAL-enabled technologies. Each team used their respective
PAL or non-PAL technologies to coordinate actions for sim-
ulated battalions, to receive orders from a division comman-
der, and to respond to a flurry of events injected into their
systems. Although the event was focused on other PAL tech-
nologies, Task Assistant was installed on the players’ work-
stations for the event and we were allocated a small amount
of time to train the users on the tool.

In the nine months prior to this evalution, four Army
SMEs worked closely with Task Assistant. Typically, they
would begin to use the tool for a particular purpose, then
stop, telling us what must be changed before they contin-
ued using it. Toward the end, they were using it to encode
scenarios they were planning for the large evaluation. They
were impressed and surprised by how quickly they could
develop these scenarios using the tasklist insertion sugges-
tions. Many Army standard operating procedures have simi-
lar substeps, so very often the SME would need only to enter
the high-level steps of the tasklist, and then customize the
substeps suggested by Task Assistant.

A few months prior to the evaluation, we took the oppor-
tunity to train the 14 users on Task Assistant and let them use
it when they were operating with the other PAL technolo-
gies. The training spanned four weeks, but Task Assistant
was allocated only three 3-hour sessions for training. Most
users could attend only one or two sessions. Most users
quickly learned the tool, but there was not sufficient time
to work through use cases for how Task Assistant could be
used effectively in the demonstration.

Although most users did not expend a lot of effort to learn
Task Assistant (they were instructed to focus on another
tool), those who did found it useful and saw great poten-
tial if fielded. During one planning phase of the event, one
user claimed that Task Assistant gave him a great advantage
when he was able to load a tasklist for a similar plan de-
veloped by another SME. The existing tasklist enabled him
to leverage mental effort expended by the other SME, who
developed the tasklist in a nonpressure situation. Users felt
Task Assistant’s value would be best demonstrated in real-
world settings, where complexity and scope is much greater.
Managing multiple tasks with an orchestration of many team
members would make Task Assistant’s value more evident.

Some of the key features of Task Assistant could not be
evaluated in the event. For example, the collaboration and
delegation capabilities were not as useful when staff mem-
bers were so physically close together: they could simply
ask a teammate to perform a task. The event gave us another
iteration of valuable feedback, but was not sufficient to eval-
uate the utility of Task Assistant for their environment.

Beyond the PAL evaluation, we also demonstrated Task
Assistant to other Army personnel at a number of bases. The

response was enthusiastic. Surprisingly, we had several re-
quests for permission to install the software on their office
computers for noncombat uses, such as managing other on-
base procedures that typically involved a substantial amount
of email.

Based on the initial enthusiastic response, we are final-
izing plans to deploy the technology to an Army unit this
year. The deployment will allow more extensive training
and a more formal evaluation. We plan to first evaluate the
AI technologies separately through a controlled experiment
to quantitatively determine how well the procedure attach-
ment and delegation suggestions adapt to user input. Then,
prior to deployment, we hope to conduct a user-satisfaction
evaluation with an Army unit after significant use.

Lessons Learned
Throughout the experience, we learned several lessons with
respect to deploying AI technology.

First, users do not distinguish between AI features and
“normal” features—they are all just features that help or get
in the way. While we were most interested in the AI fea-
tures (the learning and advanced workflow management),
the users were more interested in what we would consider
mundane aspects, such as whether the date is shown after
“checking off” a task or knowing when someone else has
modified a task. Thus, to let the AI features shine, equal or
more effort needs to be put into the non-AI features.

Second, the mundane aspects of the software must fit well
into the user’s mode of operations: users do not have the will
to “get past” a deficiency to gain the benefits of the AI tech-
nology. Users will assume that if the simple things are not
perfect, then the advanced features cannot be trusted. An
iterative design process is key to avoiding this pitfall. Get-
ting feedback often is critical, and partially implementing
features to get feedback speeds the process.

Third, task managers and other personal assistants are
secondary tools, meaning that they support a user in accom-
plishing the primary task. Therefore, it is difficult for a user
to adopt them, because her focus is on another tool. In fact, a
user of a single tool typically prefers to have secondary tools
built in. One way to address this is to ensure that the tool has
at least one feature users cannot live without—doing so will
motivate learning and use of the remainder of the tool.

Finally, we learned the value of having multiple SMEs
from a variety of backgrounds. It is difficult to understand a
domain when one has not “lived it” for an extended period.
Multiple SMEs speed the learning curve by explaining situ-
ations in varying ways and introducing you to different ideas
and different aspects of the domain.

Related Work
The Army has produced at least one other system with the
intent of encoding standard operating procedures. Named
the Military Decision Making Process Assistant, it lacks
Task Assistant’s flexibility. Soldiers cannot modify tasklists,
which means that the SOPs are not tailored to the soldiers’
work styles and environment, and therefore is little used.

One of the first distributed task management tools for of-
fice environments was Task Manager (Kreifelts, Hinrichs,



and Woetzel 1993), which contained many of the office-
oriented features of Task Assistant, including collaborative
work on tasks, tasklist templates, and attaching resources to
tasks. It added an email capability that let users create email
threads based on a particular task. This is the closest system
to Task Assistant, but it does not have any learning capabil-
ities or support for linking to automated procedures.

Many of the more recent task management tools have fo-
cused on the integration of email and task management. Eth-
nolographic studies have shown that many use their email
clients as their primary task management tools (Ducheneaut
and Bellotti 2001), mostly because many tasks either arrive
through email or are discussed there. The tools TaskMaster
(Bellotti et al. 2003), TaskVista (Bellotti et al. 2004), and
TimeStore (Yiu et al. 1997) are email clients specifically de-
signed to support task management. In a BCT environment,
email is not used: communication is via voice, instant mes-
saging, and shared information products. Therefore, these
insights do not transfer to our military environment.

A variety of commercial task management tools exists,
including Accomplice (Accomplice 2009), a PC-based tool
specializing in attaching context to tasks (email messages,
web pages, etc.), and Remember the Milk (Remember the
Milk 2009), an online To Do manager. Like the research
systems, they focus on individuals in office environments,
and consequently are not suitable for our problem.

Other forms of task management outside the office
environment include tasking manufacturing plants (Lau,
Tso, and Ho 1998), coordinating flight crew management
(Schutte and Trujillo 1996), and computer process or thread
management (Adya et al. 2002).

Conclusion
We have described the process of adapting a personalized
office To Do manager to fit the needs of a military envi-
ronment, which differ in three important ways: shorter time
scales, the focus on the team instead of the individual, and
the focus on tasklists instead of tasks. We described the Task
Assistant system and our approach to the first phase of de-
ployment. We listed several lessons we learned from the
experience, which we believe may generalize to help others
attempting to deploy AI technology to new environments.

The enthusiastic response of SMEs and current army per-
sonnel has led to current and future work in increasing the
role of learning in Task Assistant as well as further harden-
ing and additional deployments in the coming year.

Acknowledgments
We thank Tom Garvey for many of the initial ideas for this
work. We also thank Hal Dick and Kevin Vallandingham,
Army subject matter experts who helped us align the tool
with Army practices and provided many suggestions for im-
provement. This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. FA8750-07-D-0185/0004. Any opinions, findings, and
conclusions or recommendations expressed are those of the
authors and do not necessarily reflect the views of DARPA
or the Air Force Research Laboratory.

References
Accomplice. 2009. accomplice.vertabase.com/.
Adya, A.; Howell, J.; Theimer, M.; Bolosky, W. J.; and
Douceur, J. R. 2002. Cooperative task management with-
out manual stack management. In ATEC ’02: Proc. Gen-
eral Track of the Annual Conference on USENIX, 289–302.
Bellotti, V.; Ducheneaut, N.; Howard, M.; and Smith, I.
2003. Taking email to task: the design and evaluation of a
task management centered email tool. In CHI ’03: Proc.
SIGCHI Conference on Human Factors in Computing Sys-
tems, 345–352.
Bellotti, V.; Dalal, B.; Good, N.; Flynn, P.; Bobrow, D. G.;
and Ducheneaut, N. 2004. What a to-do: Studies of task
management towards the design of a personal task list man-
ager. In CHI ’04: Proc. SIGCHI Conference on Human
Factors in Computing Systems, 735–742.
Conley, K., and Carpenter, J. 2007. Towel: Towards an in-
telligent to-do list. In Proc. of the AAAI Spring Symposium
on Interaction Challenges for Intelligent Assistants, 26–32.
Ducheneaut, N., and Bellotti, V. 2001. E-mail as habitat:
An exploration of embedded personal information manage-
ment. Interactions 8(5):30–38.
Garvey, T.; Gervasio, M.; Lee, T.; Myers, K.; Angiolillo,
C.; Gaston, M.; Knittel, J.; and Kolojejchick, J. 2009.
Learning by demonstration to support military planning
and decision making. In Proc. of the 21st Conference on
Innovative Applications of Artificial Intelligence.
Haynes, A. B.; Weiser, T. G.; Berry, W. R.; Lipsitz, S. R.;
Breizat, A.-H. S.; Dellinger, E. P.; Herbosa, T.; Joseph, S.;
Kibatala, P. L.; Lapitan, M. C. M.; Merry, A. F.; Moorthy,
K.; Reznick, R. K.; Taylor, B.; Gawande, A. A.; and the
Safe Surgery Saves Lives Study Group. 2009. A surgi-
cal safety checklist to reduce morbidity and mortality in a
global population. New Engl Jrnl of Medicine (to appear).
Kreifelts, T.; Hinrichs, E.; and Woetzel, G. 1993. Shar-
ing to-do lists with a distributed task manager. In Proc.
Third European Conference on Computer-Supported Co-
operative Work.
Lau, H.; Tso, S.; and Ho, J. 1998. Development of an in-
telligent task management system in a manufacturing infor-
mation network. Expert Systems with Applications 15:165–
179(15).
Pronovost, P.; Needham, D.; Berenholtz, S.; Sinopoli, D.;
Chu, H.; Cosgrove, S.; Sexton, B.; Hyzy, R.; Welsh,
R.; Roth, G.; Bander, J.; Kepros, J.; and Goeschel, C.
2006. An intervention to decrease catheter-related blood-
stream infections in the ICU. New Eng Jrnl of Medicine
355(26):2725–32.
Remember the Milk. 2009.
www.rememberthemilk.com/.
Schutte, P. C., and Trujillo, A. C. 1996. Flight crew task
management in non-normal situations. Technical report,
NASA Langley.
Yiu, K.; Baecker, R.; Silver, N.; and Long, B. 1997. A
time-based interface for electronic mail and task manage-
ment. In Proc. HCI International, volume 97, 19–22.


