
Multiagent Meeting Scheduling with Rescheduling

Pragnesh Jay Modi and Manuela Veloso

Computer Science Department
Carnegie Mellon University

Pittsburgh PA 15213
{pmodi,mmv}@cs.cmu.edu

Abstract. We are interested in how personal agents who perform calendar man-
agement on behalf of their human users can schedule meetingseffectively. A key
difficulty of concern is deciding when to reschedule an existing meeting in favor
of a new meeting. We model the meeting scheduling problem as aspecial sub-
class of distributed constraint reasoning (DCR) called theIncremental, Limited
Information Exchange Multiagent Assignment Problem (IL-MAP). Key novel-
ties of our approach include i) a focus on incremental scheduling, ii) scheduling
under a limited information exchange paradigm and, iii) using models of other
agents to schedule more effectively. Our results are the first in DCR to show how
models of other agents can be used to improve problem solvingperformance.

1 Introduction

Meeting scheduling is a time consuming routine task that when delegated to a
personal assistant agent promises to significantly reduce daily cognitive load. A
key competency of agents who do meeting scheduling is their ability to coor-
dinate schedules such that all attendees of a meeting agree on its start time [3,
9, 2]. The problem is challenging in part because a) each agent chooses its own
schedule, i.e., scheduling isdistributed, b) new meetings are introduced over
time, i.e., scheduling isincremental, and c) agents arelimited in the informa-
tion they can exchange. This article provides an approach tomultiagent meeting
scheduling using the Distributed Constraint Reasoning (DCR) paradigm [1, 4,
5, 10, 11]. Previous researchers have proposed DCR as a framework for multia-
gent coordination and considerable progress has been made over the last several
years. However, novel techniques are needed to address the challenges described
above.

The main idea in this paper is to exploit given models of “scheduling diffi-
culty” with other agents’ in order improve meeting scheduling performance. The
specific hypothesis we investigate is that an agent can use models of the calendar
density of other agents where we assume that the calendar density is correlated
with the agent’s rank in an organization. This is novel because to our knowl-
edge, existing methods for DCR have not investigated how to take advantage of

learned or given models of other agents to aid in making scheduling decisions.
Further, we evaluate our approach in anincremental schedulingparadigm, in
which new meetings must be scheduled in the context of an existing schedule.
Existing DCR approaches have focused primarily on batch problem solving and
are not designed for minimizing disruption to an initial given solution. Finally,
we assume that communication between agents is limited. We explicitly prohibit
the communication of information about variables between agents who are not
involved in the variable’s value assignment. This restriction is motivated by the
meeting scheduling domain in which schedule privacy is a keyconcern. Exist-
ing DCR algorithms typically communicate “context” information which does
not adhere to this restriction.

We first formalize the meeting scheduling problem by defininga special
form of DCR which we call the Incremental, Limited Information Exchange
Multiagent Assignment Problem (IL-MAP). IL-MAP requires agents to assign
values to variables where multiple agents must agree on value assignments but
are limited in what and to whom information can be communicated. Second,
we describe a basic distributed protocol for IL-MAP in whichan initiator pro-
poses assignments to others who either agree or refuse the proposed assignments
based on their own existing assignments. The protocol conforms to our need for
limited information exchange by only communicating allowed information to
relevant agents. Third, we use this basic protocol to investigate using models
of scheduling difficulty with other agents to increase effectiveness of the mul-
tiagent meeting scheduling process. Finally, we demonstrate that our approach
improves scheduling effectiveness in an agent organization hierarchy where the
lower ranked agents have lower calendar density than the higher ranked agents
in the hierarchy.

The multiagent meeting scheduling problem has been previously investi-
gated but methods for making effective rescheduling decisions is lacking. Sen
and Durfee [9] formalize the problem and identify a family ofnegotiation proto-
cols aimed at searching for feasible solutions in a distributed manner. However,
rescheduling of existing meetings or modeling of other agents to improve per-
formance is not a major focus. Sen and Durfee also describe a contract-net ap-
proach for multiagent meeting scheduling [8] and in this context, rescheduling
and cancellation of existing meetings is discussed. The critical issues are raised
and a rich decision making framework is presented but is mainly theoretical. Our
research represents a further investigation of some of the critical issues raised
by them. Freuder, Minca and Wallace [2] have previously investigated meeting
scheduling within the DCR framework where the primary motivation was to in-
vestigate tradeoffs between efficiency of scheduling and loss of privacy, but not
issues of incremental problem solving or agent modeling arenot addressed.

2 Meeting Scheduling as Distributed Constraint Reasoning

We view meeting scheduling as a distributed problem in whicheach agent man-
ages and is responsible for its own calendar. A centralized approach is also pos-
sible in which a single server is assumed to have access to each agent’s calendar
and makes scheduling decisions for all agents. However, a centralized approach
has several drawbacks including that it requires agents to reveal potentially pri-
vate calendar information to the central server.

We use the Distributed Constraint Reasoning (DCR) paradigm[11] to model
distributed meeting scheduling. DCR is defined by a set of variables where each
variable is assigned to an agent who has control of its value,and agents must
choose values for their assigned variables so that a given set of constraints are
satisfied or optimized. Constraints between variables assigned to the same agent
are calledintra-agentconstraints, while constraints between variables assigned
to different agents are calledinter-agentconstraints. To ensure that inter-agent
constraints are satisfied, agents must coordinate their choice of values for vari-
ables through a communication protocol.

2.1 The Multiagent Assignment Problem (MAP)

In this section, we introduce an important subclass of DCR which we call the
multiagent assignment problem(MAP) . In MAP, we assume that agents must
map elements from one set, which are modeled as the variables, to elements of
a second set, which are modeled as the values. Importantly, we assume multi-
ple agents need to agree on the assignment of a value to a givenvariable. Since
decision-making control is distributed among the agents, this “agreement” re-
quirement raises many unique challenges.

We define MAP as follows.

– A = {A1, A2, ..., An} is a set ofagents.
– V = {V1, V2, ..., Vm} is a set ofvariables.
– D = {d1, d2, ..., dk} is a set ofvalues.
– participants(Vi) ⊆ A is a set of agents who are assigned the variableVi.
– vars(Ai) ⊆ V is a set of variables assigned to agentAi.
– For each variableVi, an inter-agentagreementconstraint is satisfied if and

only if the same value fromD is assigned toVi by all the agents inparticipants(Vi).
– For each agentAi, an intra-agentmutual exclusionconstraint is satisfied

if and only if no value fromD is assigned to more than one variable in
vars(Ai).

MAP has some similarities to the classical “assignment problem” from com-
binatorial optimization research[7]. Two key differencesare that a) MAP re-
quires distributed agents to agree on assignments and b) MAPdoes not yet

model degrees of solution quality, only valid and invalid solutions. Further ex-
tension of MAP to model optimization problems is important future work.

2.2 Meeting Scheduling as MAP

We describe the multiagent meeting scheduling problem followed by its for-
mulation as a MAP. Meeting scheduling requires meetings to be paired with
timeslots subject to three constraints: a) each meeting is assigned to exactly one
timeslot, b) each timeslot is paired with no more than one meeting, and c) all
the attendees of a given meeting agree on its assigned timeslot. The goal of the
following model is to represent these three constraints.

We define the meeting scheduling problem as follows.

– A = {A1, A2, ..., An} is a set of agents.
– M = {M1,M2, ...,Mm} is a set of meetings. We assume each meeting has

the same durationd.
– attendees(Mi) ⊆ A are the attendees of meetingMi.
– meetings(Ai) ⊆ M are the meetings of whichAi is an attendee.
– initiator(Mi) ∈ attendees(Mi) is the designated initiator of meetingMi.
– T = {T1, T2, ..., Tp} is a set of discrete non-overlapping contiguous times-

lots of lengthd.
– Sinit = {S1, S2, ..., Sn} is a set of calendars. EachSi is a mapping from

the meetings inmeetings(Ai) to timeslots inT . A calendarSi is valid if and
only if a) each meeting is mapped to exactly one timeslot and no timeslot
has more than one meeting mapped to it, and b) for each meetingMk and
for all attendeesAi, Aj ∈ attendees(Mk), Si(Mk) = Sj(Mk). That is, the
calendars of all attendees of a meeting agree on its assignedtimeslot.

The representation of meeting scheduling as MAP is straightforward. The
set of MAP variablesV is given by the set of meetingsM and the set of MAP
valuesD is given by the set of timeslotsT . The participants of variableVi

correspond to theattendeesof meetingMi. The MAP intra-agent mutual exclu-
sion constraint prevents a timeslot from being double-booked and the inter-agent
agreement constraint ensures that meeting attendees agreeon the time.

Figure 1 illustrates the multiagent assignment problem (and its solution)
with three agentsA1, A2, A3, five meetingsM1,M2,M3,M4,M5 and four times-
lots. Note that for each agent, each meeting is assigned to a different value in
order to satisfy the intra-agent mutual exclusion constraint. Between agents, the
variables corresponding to the same meeting are assigned the same value in
order to satisfy the inter-agent agreement constraint.

1T 2T 3T 4T

A1

A2

A3

Values:

M1

M4

M5

M5

M3

M3

M2

M5M2

Solution:

1

2

3

4

5

1

1M : A , A2

2M : A , A3
M : A3

1 2M : A , A , A3

Variables and Participants

M : A

Fig. 1.Meeting Scheduling as the Multiagent Assignment Problem.

2.3 IL-MAP: MAP in Incremental, Limited Information Exchan ge
Domains

We further extend the scheduling problem to introduce the IL-MAP problem
in which agents must solve MAP in an incremental fashion while limiting the
information they can exchange. These two features are described next.

Incremental In an incremental MAP, new variables and associated constraints
are added to the problem over time and must be integrated intoan existing
assignment. In meeting scheduling for example, new meetings arise over
time and must be scheduled in the context of an existing calendar. In addition
to the elements of MAP defined above, in the incremental version we are
also given:

– Sinit = {(V1, di), (V2, dj), ..., (Vm, dk)} is an initial solution.
– Vm+1 is a new variable to be assigned a value.
– participants(Vm+1) ⊆ A is a set of agents who are assigned the variable

Vm+1.

The key difficulty that arises in incremental MAP is that existing assign-
ments may need to be changed in order to successfully accommodate the
new variable but it is difficult to determine in advance whichchanges will
result in a set of valid schedules.

Limited Information Exchange Although agents must exchange some infor-
mation in order to obtain feasible solutions, the information exchange pro-
cess is limited due to the distributed nature of the problem.In particular, we
assume the following condition.

– Agents do not communicate information about a variable to agents who
are not participants in that variable.

For example, the id of a variable, its current value, or the participants in
the variable are not communicated between agents who are notboth partic-
ipants in the variable. A key challenge is to schedule effectively under this
condition.

procedure initiate(Mj):
(1) initiator(Mj)← Ai

(2) t← GetT imeslot(Mj)
(3) if t is null:
(4) return
(5) status(Mj ,t)← PENDING
(6) for each Ak ∈ attendees(Mj):
(7) send (PROPOSE,Mj , t, Ai) to Ak

procedure when received(PROPOSE,
Mj , t, initiator):

(8) if existsMk where status(Mk, t) is PENDING:
(9) reply← IMPOSSIBLE
(10) else ifexistsMk where

status(Mk, t) is CONFIRMED:
(11) if BumpingRule(Mj, Mk) is true:
(12) status(Mk,t)← BUMPED
(13) status(Mj ,t)← PENDING
(14) reply← PENDING
(15) else:
(16) reply← IMPOSSIBLE
(17) else:
(18) status(Mj ,t)← PENDING
(19) reply← PENDING
(20) send (REPLY,Mj , t, reply,Ai) to initiator

procedure when received(REPLY,
Mj , t, reply,Attendee):

(21) agentView(Mj ,t,Attendee)← reply
(22) if exists t’ where∀Ak ∈ attendees(Mj),

agentView(Mj , t’,Ak) is PENDING
and status(Mj , t’) is PENDING

(23) status(Mj , t’) ← CONFIRMED
(24) resolved(Mj)
(25) for each Ak ∈ attendees(Mj):
(26) send (CONFIRM,Mj , t’) to Ak

(27) if existsMk where status(Mk,t’) is BUMPED:
(28) reschedule(Mk)
(29) else:
(30) t”← GetT imeslot(Mj)
(31) if t” is null:
(32) resolved(Mj)
(33) for each Ak ∈ attendees(Mj):
(34) send (FAIL, Mj) to Ak

(35) else:
(36) status(Mj ,t”) ← PENDING
(37) for each Ak ∈ attendees(Mj):
(38) send (PROPOSE,Mj , t”, Ai) to Ak

procedure when received(CONFIRM,Mj , t):
(39) status(Mj , t)← CONFIRMED
(40) resolved(Mj)
(41) if existsMk where status(Mk,t) is BUMPED:
(42) reschedule(Mk)

procedure when received(FAIL, Mj):
(43) resolved(Mj)

procedure when received(RESCHEDULE,Mj):
(44) reschedule(Mj)

procedure reschedule(Mj):
(45) if Ai equalsinitiator(Mj):
(46) if exists t where status(Mj ,t) is

BUMPED or CONFIRMED:
(47) status(Mj , t)← IMPOSSIBLE
(48) for each Ak ∈ attendees(Mj):
(49) for each t where agentView(Mj , t,Ak) is

IMPOSSIBLE or PENDING:
(50) agentView(Mj , t ,Ak)← POSSIBLE
(51) initiate(Mj)
(52) else:
(53) send (RESCHEDULE,Mj) to initiator(Mj)

procedure resolved(Mj):
(54) for each t where status(Mj , t) is PENDING:
(55) status(Mj , t)← POSSIBLE
(56) if existsMk where status(Mk, t) is BUMPED:
(57) status(Mk, t)← CONFIRMED

Fig. 2. Algorithm for AgentAi

3 A Solution Technique for IL-MAP in Meeting Scheduling

We are interested in solution techniques for IL-MAP in the context of distributed
meeting scheduling. We first describe a basic negotiation framework upon which
our techniques are applied. Next, we describe the problem ofrescheduling ex-
isting meetings. Finally, we present our approach for making this rescheduling
decision effectively.

3.1 Basic Negotiation Protocol

Sen and Durfee [9] describe a basic negotiation protocol formeeting scheduling
in which agents negotiate inrounds. Each meeting has a designated initiator
who manages the negotiation of the meeting by proposing times and collecting
responses from the other attendees in a sequence of rounds. In each round, each
attendee responds with a PENDING (accept) or IMPOSSIBLE (reject) message
for the proposed time. The initiator collects the responsesin each round and does
a set intersection to try to find a mutually acceptable time. If a time is found, the
meeting is CONFIRMED (scheduled) in one additional round and the process
terminates. Otherwise, the process continues in rounds until the initiator runs
out of times to propose in which case the process terminates with failure.

We adopt a variant of this basic protocol in which attendees may tentatively
bump a CONFIRMED meeting in favor of a new meeting in order to decrease
the possibility of scheduling failure. We say it is tentatively bumped because an
agent waits until the new meeting is confirmed in the bumped timeslot before
initiating rescheduling of the bumped meeting. If the new meeting is confirmed
in some other slot or fails to be scheduled, the bumped meeting is re-instated
into its original slot. If an agent needs to reschedule a meeting of which it is not
the original initiator, it sends a RESCHEDULE message to theinitiator, who
will be responsible for restarting a negotiation episode for the meeting.

Details of the algorithm are shown in Figure 2. Two functionsGetT imeslot

andBumpingRule are purposely left unspecified in Figure 2.GetT imeslot

returns a free timeslot from the calendar or null if one does not exist. This func-
tion encapsulates a local optimization routine which ranksall the free timeslots
according to a complex set of user preferences, and returns the top ranked time.
Further discussion is out of scope of this paper and we refer the reader to [6]
for more details. TheBumpingRule function returns true or false, and encap-
sulates the reasoning of the agent about whether one meetingshould be bumped
for another. A technique for making this decision is described in rest of this next
section.

3.2 The Problem of When to Reschedule

A key algorithmic decision to be made is when to bump an existing meeting
in favor of a proposed meeting. More specifically, an attendee Ai must make a
rescheduling decision when it receives a proposal for meetingM1 at time slotT1

butAi already has a meetingM2 confirmed in slotT1. Ai has to decide between
accepting the proposal or rejecting it. If the agent decidesto accept the proposal,
it may need to rescheduleM2 with the other attendees. This rescheduling may
cause the other attendees in turn to bump other meetings, which can result in
cascading disruption costs throughout the set of agents. The alternative is forAi

to reject the proposal forM1, but this entails risk also because the scheduling of
M1 may ultimately fail. It is difficult to determine in advance which is the better
decision because other people’s schedules are not directlyobservable.

Fixed strategies such as always rejecting or always bumpingfail to be effec-
tive. Table 1 shows a comparison of the average performance of the two fixed
strategies. (The exact experimental set-up is described inmore detail in Sec-
tion 5. These results are with 20 agents who have initial calendar densities of
85%.) The “failures” column shows that for the Never-Bump strategy a mu-
tually free timeslot could not be found in 49 out of 50 cases. The “timeouts”
column shows that for the Always-Bump strategy the negotiation failed to ter-
minate after a given amount of time (10 minutes) in 50 out of 50cases. In these
cases, a cascading effect caused many meetings to be bumped until ultimately a
maximum time limit was reached.

Table 1. Empirical analysis of two strawman strategies illustratesthe need for intelligent
rescheduling techniques

Strategy RoundsMsgsFailuresTimeouts
Never-Bump 6.88 44 49/50 –
Always-Bump 614 2736 – 50/50

3.3 Modeling Scheduling Difficulty

We propose a method for making rescheduling decisions in which agents use a
model of “scheduling difficulty” with other agents. Such models can be given
to an agent or they can be learned by the agent over time. In this paper we are
interested in how a scheduling difficulty model, once obtained, can be used by
an agent to improve rescheduling decisions. Also, we note that more complex
models of scheduling difficulty are possible than the one presented here. How-
ever, such models require more effort to construct and are not guaranteed to

A2

A5 A36
1

32 3
A4

6

Fig. 3. A model of relative scheduling difficulty with four agentsA2,A3,A4 andA5.

improve scheduling. We opt for the following model which is computationally
convenient and can be shown to improve scheduling performance.

Let SDi be a number denoting thescheduling difficultyof an agentAi, i.e.,
if SDi > SDj , then scheduling a meeting with agentAi is expected to be more
“difficult” than with agentAj . SD is measured in scheduling difficulty “units”.
We use this factor to encapsulate the many relevant featuresthat contribute to
scheduling difficulty with another agent. Assuming that each agent is operating
on behalf of a human,SD could take into account factors such as stubbornness
or accessibility to email communication. We will consider calendar density as
associated with position in a organization as a key factor. We defineki,j as the
relative difficulty for scheduling a meeting withAi versus scheduling a meeting
with Aj . It makes natural sense for this relation to be multiplicative and transi-
tive. That is, for three agentsA2, A3, A4, we require thatk2,3 × k3,4 = k2,4.

Example: Figure 3 showsA1’s model of relative scheduling difficulty with
a group of four other agentsA2,A3,A4, andA5. The arrow fromA3 to A4 with
magnitude 3 represents the relationSDA4

= 3×SDA3
, i.e., scheduling a meet-

ing with A4 is 3 times “more difficult than” scheduling a meeting withA3.

Given a model of scheduling difficulty, we now have a way to define a deci-
sion rule for when to reschedule a meeting in favor of another. Given a meeting
Mj , Ak computes the difficulty of schedulingMj as

Difficulty(Mj) =
∑

Ai∈attendees(Mj)−{Ak}

SDi (1)

Finally, the bumping rule is given as follows. An agent bumpsa meeting
Mj in favor of a meetingMi if and only if the followingBumpingRule(Mi,Mj)
evaluates totrue:

Difficulty(Mj) < Difficulty(Mi) (2)

4 Example of a Meeting Scheduling Negotiation

We describe an example scheduling negotiation episode involving an agentA1.
Figure 3 showsA1’s model of relative scheduling difficulty with four other
agentsA2,A3,A4, andA5. Details of the negotiation using this model is shown
in Figure 4. Each box represents the state of agentA1’s calendar at a given
time. Arrows denote incoming and outgoing messages. Each message is 3-
tuple of meeting id, time, and meeting status, where status is eitherpossible,
pending, bumped, confirmedor impossible. In this example,attendees(M1) =
{A1, A2, A3}, attendees(M2) = {A1, A4}, andattendees(M3) = {A1, A5}.

At time 1, A1 has meeting M1 currently confirmed at time 10 am and re-
ceives a request fromA4 who is the initiator of meeting M2. The time proposed
is 10 am, which conflicts with M1.A1 must now decide whether to rejectA4’s
proposal, or accept it and bump meeting M1. Referring to Figure 3 and Equa-
tion 1,A1 computes the scheduling difficulty of M1 asSD2+SD3 = 1+1 = 2
and the scheduling difficulty of M2 asSD4 = 3. SinceDifficulty(M1) <

Difficulty(M2), A1 decides to bump.
At time 2,A1 changes the status of M1 to bumped, and sets status of M2 as

pending for 10 am, and a response is sent toA4. At time 3, as an example of
concurrency,A1 receives a request fromA5 for 10 am for a new meeting M3. At
time 4,A1 responds impossible since 10 am is already pending for M2. Pending
meetings are never bumped (only confirmed meetings can be bumped). At time
5, A1 hears back fromA4 that M2 should now be confirmed for the previously
proposed time of 10 am. At time 6,A1 sets the status of M2 to confirmed, and
begins the rescheduling of M1 by proposing a new time to the other attendees
A2 andA3. (This example has assumed thatA1 is the initiator of M1. If it were
not, then in our protocol,A1 would have sent a message to the initiator of M1
indicating that 10 am is now impossible, and the initiator would be responsible
for restarting the negotiation and rescheduling M1). At time 7,A1 hears back
from A2 that 11 am is pending in its calendar for meeting M1. At time 8,A1

records this information in its current state. At time 9 and 10, A1 hears back
from A3 and records the response. At time 11,A1 has now heard back from
all attendees for meeting M1, and all have agreed on 11 am.A1 sends the final
confirmation message to all attendees. We end the example here, but realize that
sinceA2 or A3 may have bumped meetings at 11 am to accommodateA1’s
request for meeting M1, the scheduling episode may not be over.

5 Experimental Results

We present experimental results comparing rescheduling strategies that use a
model of “scheduling difficulty” with other agent versus strategies that do not. In

Fig. 4. An example negotiation between an agent and four other agents A2,A3,A4 andA5.

the first strategy, denotedAtt, agents simply compare the number of attendees
and bump the meeting with fewer attendees when there is a conflict between
two meetings. They do not use knowledge about other agents inmaking their
bumping decisions. In the second strategy, denotedSD, we assume that agents
know the rank of other attendees and use this information to make bumping
decisions, i.e., they can assign a “scheduling difficulty” to each attendee.

5.1 Experimental Setup

We evaluate each strategy by averaging measurements over a number of “runs”.
Each run consists of two phases: a problem generation phase followed by a
problem solving phase. We describe each phase in turn. In ourexperiments, we
report measurements from the problem solving phase only.

Phase 1The problem generation phase is centralized. We automatically gen-
erate a set of agentsA each with a desired initial schedule density. Each
agent’s calendar has 50 timeslots to simulate a 5 day 10-hourwork week.
Next, we automatically generate and schedule meetings between random
subsets of the agents until all calendars are filled to their desired density.
The attendees of a given meeting are chosen according to a uniform ran-
dom distribution. The number of attendees for a given meeting is chosen
according to a distribution in which meetings of more peopleare less likely
than meetings with fewer people. Every meeting has at least two attendees.
Finally, we generate one additional new meetingMm+1 that must be sched-
uled in the problem solving phase. The attendees of the new meeting are
chosen to be a random subset of the agents. In our experiments, the number
of attendees of the new meeting is fixed to 4. One of them is randomly cho-
sen to be the initiator. Every generated problem is ensure tohave a solution.

Phase 2The problem solving phase is completely distributed. The goal is to
find a timeslot for the new meeting{Mm+1} while successfully reschedul-
ing any bumped existing meetings. That is, the goal is to find an assign-
ment of timeslots to meetings inM∪ {Mm+1} that satisfy the intra-agent
and inter-agent constraints. We measure number offailureswhich is defined
as the number of meetings inM ∪ {Mm+1} unassigned a timeslot after a
given amount of time. Failures may occur either because the initiator gives
up scheduling the meeting or a max time elapses. Note that thenumber of
failures in a given run can be greater than one when multiple meetings are
bumped and fail to be rescheduled.

5.2 Experiments in a Hierarchical Agent Organization

Human organizations typically have hierarchies in which higher ranked people
have denser calendars than lower ranked ones. We hypothesisthat the density of

an agents calendar and thus her organizational rank, is a good predictor of the
difficulty of scheduling with that person.

To evaluate our hypothesis, we begin with an extreme case – a simple two-
level organization hierarchy. We divide agents into two equal size groups of
“busy” and “not busy” agents, where the initial density of schedules is fixed to
90 percent and 30 percent, respectively. The scheduling difficulty model used
by theSD strategy in this scenario is defined asSDbusy = 3 × SDnonbusy.

Figure 5 contrasts two strategies as we increase the total number of agents.
The graph shows theSD strategy is more effective in terms of preventing
scheduling failures than theAtt strategy. At 50 agents, theSD strategy results
in a failure rate of 0.28 on average, while the simpler strategy Att results in 0.76
failures on average. Failure rate is computed by summing thenumber of failures
over all runs and then dividing by the total number of runs. Wedo 50 runs for
each datapoint where each run follows the methodology described above. This
graph shows that the use of our scheduling difficulty model isable to reduce
scheduling failures. Also, the high failure rate caused by uncontrolled cascad-
ing of bumps, as we saw in Table 1 for the Always-bump strategy, is avoided.

Next, we evaluate the effect of varying our scheduling difficulty model in
the busy/non-busy hierarchy. We use a scheduling difficultymodel defined as
SDbusy = k × SDnonbusy and examine the effects of varyingk. The same set
of scheduling problems are used for each value ofk, i.e., the only difference
is the rescheduling decision rule used by the agents. We expect that changes in
performance will level off as the scheduling difficulty multiplier k is increased.
This is because after some point, an increase ink no longer modifies an agents
rescheduling decisions. For example, a meetingM1 with 4 non-busy attendees
will be bumped in favor a meetingM2 with one busy attendee whenk = 5.
M1 will continue to be bumped ifk is increased. Thus increasingk should
stop having an effect on agent decision making at some point.Figure 6 shows
empirical data consistent with our hypothesis. An organization of 10 agents was
used. Each datapoint represents the average over 50 runs. The graph shows that
the effect on failure rate levels off as predicted.

Finally, we experiment with a more complex scheduling difficulty model
where there are four levels rather than just two. We use the organization hier-
archy shown in Figure 7 with 8 agents in each level, for a totalof 32 agents.
We experiment with four levels with initial schedule densities of 90,70,50,30
percent respectively. We defineSDLi

= 2 × SDLi+1
. That is, the difficulty of

scheduling with an agent at leveli is twice as difficult as scheduling with an
agent at leveli + 1. The empirical results over 500 runs are shown in Figure 8.
The failure rate is reduced from 0.28 using theAtt strategy to 0.02 using the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

4 10 20 30 40 50
A

vg
 N

um
be

r
of

 F
ai

lu
re

s
Number of Agents

Number of Scheduling Failures

Att
SD

Fig. 5. Comparison of two rescheduling strategies (Att, SD) as a function of organization size.
The average number of meetings that failed to be scheduled isshown.

 0

 0.2

 0.4

 0.6

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 F

ai
lu

re
s

Scheduling Difficulty Multiplier (k)

Effect of Multiplier on Failure Rate

Fig. 6. Effect of increasing value of scheduling difficulty multiplier on scheduling performance.
The average number of meetings that failed to be scheduled isshown.

SD strategy. We can conclude that theSD strategy significantly reduces the
number of scheduling failures.
6 Conclusion
We have modeled the multiagent meeting scheduling problem as a form of dis-
tributed constraint reasoning in which agents must assign aset of values to a
set of variables. We presented a novel approach to the problem in which agents
use given or learned “scheduling difficulty” models of otheragents in order to
decide when to change their existing assignments in order toaccept proposals
from others. We have shown that this approach controls the amount of bumping
so that the negotiation is able to terminate in a given amountof time, while also
reducing the scheduling failure rate over an alternative approach that does not
take into account such models. In future work, we are interested in how an agent
can automatically learn these models from past negotiationhistory.
References

1. C. Bessire, A. Maestre, and P. Meseguer. Distributed dynamic backtracking. InInternational
Joint Conference on AI Workshop on Distributed Constraint Reasoning, 2001.

Hierarchy Level and Calendar Density

70%L2:

50%L3:

30%L4:

90%L1:

Scheduling Difficulty

SD = 1L4

SD = 2L3

SD = 4L2

L1 SD = 8

Fig. 7.Agent hierarchy where higher ranked agents have higher calendar densities.

 0

 0.25

 0.5

Att SD

A
vg

 N
um

be
r

of
 F

ai
lu

re
s

Rescheduling Strategy

32 Agent Four Level Hierarchy

Fig. 8.Comparison of two rescheduling strategies (Att, SD) in a four level organization hierarchy.
The number of meetings that failed to be scheduled (average over 500 run) is shown.

2. Eugene C. Freuder, Marius Minca, and Richard J. Wallace. Privacy/efficiency tradeoffs in
distributed meeting scheduling by constraint-based agents. In IJCAI-2001 Workshop on
Distributed Constraint Reasoning, 2001.

3. Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling: Preliminary experi-
mental results. InProceedings of the First International Conference on Multi-Agent Systems
(ICMAS’95). The MIT Press: Cambridge, MA, USA.

4. R. Mailler and V. Lesser. A mediation based protocol for distributed constraint satisfaction.
In The Fourth International Workshop on Distributed Constraint Reasoning, 2003.

5. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed constraint
optimization with quality guarantees.Artificial Intelligence, 2004.

6. P. J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A personal assistant agent for calendar
management. InAgent Oriented Information Systems, (AOIS) 2004, 2004.

7. Christos H. Papadimitriou and Kenneth Steiglitz.Combinatorial optimization: algorithms
and complexity. Prentice-Hall, Inc., 1982.

8. Sandip Sen and Edmund Durfee. A Contracting Model for Flexible Distributed Scheduling.
Annals of Operations Research, 65:195–222, 1996.

9. Sandip Sen and Edmund H. Durfee. A formal study of distributed meeting scheduling. In
Group Decision and Negotiation, volume 7, pages 265–289, 1998.

10. M.C. Silaghi, D. Sam-Haroud, and Boi Faltings. Asynchronous search with aggregations. In
Proceedings of National Conference on Artificial Intelligence, 2000.

11. M. Yokoo. Distributed Constraint Satisfaction:Foundation of Cooperation in Multi-agent
Systems. Springer, 2001.

