Multiagent Meeting Scheduling with Rescheduling

Pragnesh Jay Modi and Manuela Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213
{pmodi,mmy} @cs.cmu.edu

Abstract. We are interested in how personal agents who perform calenda-

agement on behalf of their human users can schedule meeffegsively. A key

difficulty of concern is deciding when to reschedule an éxgstmeeting in favor
of a new meeting. We model the meeting scheduling problemsgeeial sub-
class of distributed constraint reasoning (DCR) calledItieeemental, Limited
Information Exchange Multiagent Assignment Problem (IIAR). Key novel-

ties of our approach include i) a focus on incremental schimglui) scheduling

under a limited information exchange paradigm and, iilngsinodels of other
agents to schedule more effectively. Our results are thatilBCR to show how
models of other agents can be used to improve problem soperfgrmance.

1 Introduction

Meeting scheduling is a time consuming routine task thatnadelegated to a
personal assistant agent promises to significantly redaitg ecbgnitive load. A
key competency of agents who do meeting scheduling is thdityato coor-
dinate schedules such that all attendees of a meeting agri¢e siart time [3,
9, 2]. The problem is challenging in part because a) eachtaf@oses its own
schedule, i.e., scheduling distributed b) new meetings are introduced over
time, i.e., scheduling isicremental and c) agents arémited in the informa-
tion they can exchange. This article provides an approanfuttagent meeting
scheduling using the Distributed Constraint ReasoningRp@aradigm [1, 4,
5, 10, 11]. Previous researchers have proposed DCR as af@itor multia-
gent coordination and considerable progress has been madthe last several
years. However, novel techniques are needed to addressatenges described
above.

The main idea in this paper is to exploit given models of “stiieg diffi-
culty” with other agents’ in order improve meeting schedglperformance. The
specific hypothesis we investigate is that an agent can udelsof the calendar
density of other agents where we assume that the calendsitydisncorrelated
with the agent’s rank in an organization. This is novel bseato our knowl-
edge, existing methods for DCR have not investigated hoake advantage of

learned or given models of other agents to aid in making adhegdecisions.
Further, we evaluate our approach in iagremental schedulingaradigm, in
which new meetings must be scheduled in the context of atirxischedule.
Existing DCR approaches have focused primarily on batchlpro solving and
are not designed for minimizing disruption to an initial givsolution. Finally,
we assume that communication between agents is limitedx@liely prohibit
the communication of information about variables betwegenis who are not
involved in the variable’s value assignment. This restiitis motivated by the
meeting scheduling domain in which schedule privacy is adacern. Exist-
ing DCR algorithms typically communicate “context” infoation which does
not adhere to this restriction.

We first formalize the meeting scheduling problem by defingngpecial
form of DCR which we call the Incremental, Limited Informati Exchange
Multiagent Assignment Problem (IL-MAP). IL-MAP requiregents to assign
values to variables where multiple agents must agree ore\aggignments but
are limited in what and to whom information can be commumdaiSecond,
we describe a basic distributed protocol for IL-MAP in whigh initiator pro-
poses assignments to others who either agree or refusedhegad assignments
based on their own existing assignments. The protocol corsdo our need for
limited information exchange by only communicating allahieformation to
relevant agents. Third, we use this basic protocol to igatt using models
of scheduling difficulty with other agents to increase dffemess of the mul-
tiagent meeting scheduling process. Finally, we dematestreat our approach
improves scheduling effectiveness in an agent organizdiierarchy where the
lower ranked agents have lower calendar density than theehiginked agents
in the hierarchy.

The multiagent meeting scheduling problem has been prsljidovesti-
gated but methods for making effective rescheduling dewssis lacking. Sen
and Durfee [9] formalize the problem and identify a familynafgotiation proto-
cols aimed at searching for feasible solutions in a distetlumanner. However,
rescheduling of existing meetings or modeling of other #&g#mimprove per-
formance is not a major focus. Sen and Durfee also descriloateact-net ap-
proach for multiagent meeting scheduling [8] and in thisteat) rescheduling
and cancellation of existing meetings is discussed. Thiealrissues are raised
and arich decision making framework is presented but is In#ieoretical. Our
research represents a further investigation of some ofiitieat issues raised
by them. Freuder, Minca and Wallace [2] have previously stigated meeting
scheduling within the DCR framework where the primary mation was to in-
vestigate tradeoffs between efficiency of scheduling ass @ privacy, but not
issues of incremental problem solving or agent modelinghateaddressed.

2 Meeting Scheduling as Distributed Constraint Reasoning

We view meeting scheduling as a distributed problem in wiei@th agent man-
ages and is responsible for its own calendar. A centralipgdcach is also pos-
sible in which a single server is assumed to have accessicagent’s calendar
and makes scheduling decisions for all agents. Howeventsatized approach
has several drawbacks including that it requires agentsveal potentially pri-
vate calendar information to the central server.

We use the Distributed Constraint Reasoning (DCR) paragtigigto model
distributed meeting scheduling. DCR is defined by a set aélsbes where each
variable is assigned to an agent who has control of its valnd,agents must
choose values for their assigned variables so that a givesf senstraints are
satisfied or optimized. Constraints between variablegaesdito the same agent
are calledntra-agentconstraints, while constraints between variables asdigne
to different agents are calldédter-agentconstraints. To ensure that inter-agent
constraints are satisfied, agents must coordinate theiceld values for vari-
ables through a communication protocol.

2.1 The Multiagent Assignment Problem (MAP)

In this section, we introduce an important subclass of DCRwkve call the
multiagent assignment proble(WAP) . In MAP, we assume that agents must
map elements from one set, which are modeled as the varjdgblekements of

a second set, which are modeled as the values. Importarglgsaume multi-
ple agents need to agree on the assignment of a value to awgixiable. Since
decision-making control is distributed among the agetis, ‘‘agreement” re-
quirement raises many unique challenges.

We define MAP as follows.

- A={A1, Ay, ..., A, } is a set ofagents

-V ={W,V,..,V,}is aset olvariables

— D ={dy,ds,...,dy} is a set olvalues

participant{V;) C A is a set of agents who are assigned the vari&hle
varg(4;) C Vis a set of variables assigned to agdnt

For each variablé/;, an inter-agenagreementonstraint is satisfied if and
only if the same value fror® is assigned td; by all the agents iparticipant{V;).
For each agenti;, an intra-agenmutual exclusiorconstraint is satisfied

if and only if no value fromD is assigned to more than one variable in
vars(4;).

MAP has some similarities to the classical “assignmentlerabfrom com-
binatorial optimization research[7]. Two key differenca® that a) MAP re-
quires distributed agents to agree on assignments and b) 8b&B not yet

model degrees of solution quality, only valid and invalidusions. Further ex-
tension of MAP to model optimization problems is importauiuie work.

2.2 Meeting Scheduling as MAP

We describe the multiagent meeting scheduling problenovied by its for-
mulation as a MAP. Meeting scheduling requires meetingsetgdired with
timeslots subject to three constraints: a) each meetinggigiaed to exactly one
timeslot, b) each timeslot is paired with no more than onetmgeand c) all
the attendees of a given meeting agree on its assigned eim€&kk goal of the
following model is to represent these three constraints.

We define the meeting scheduling problem as follows.

- A={Ay, As,..., A, } is a set of agents.

- M = {My, My, ..., M,,} is a set of meetings. We assume each meeting has

the same duratiod.

attendee§\/;) C A are the attendees of meetiig.

meeting$A;) C M are the meetings of whicH; is an attendee.

initiator (M;) € attendees(M;) is the designated initiator of meetirdg;.

-7 ={T1,T5,...,T,} is a set of discrete non-overlapping contiguous times-
lots of lengthd.

— Sinit = {S1,952,...,5,} is a set of calendars. Eac}) is a mapping from
the meetings imeetingsA;) to timeslots in7. A calendars; is valid if and
only if a) each meeting is mapped to exactly one timeslot antimeslot
has more than one meeting mapped to it, and b) for each mekfjngnd
for all attendeesd;, A; € attendee§M},), S;(My) = S;(Mj). That is, the
calendars of all attendees of a meeting agree on its assigneslot.

The representation of meeting scheduling as MAP is striightrd. The
set of MAP variabled’ is given by the set of meeting$t and the set of MAP
valuesD is given by the set of timeslotg. The participants of variable V;
correspond to thattendee®f meetingM;. The MAP intra-agent mutual exclu-
sion constraint prevents a timeslot from being double-lkdaknd the inter-agent
agreement constraint ensures that meeting attendeesagtiee time.

Figure 1 illustrates the multiagent assignment problend (i&® solution)
with three agentsl,, A,, As, five meetingsVy,Ms,M3,M4,Ms and four times-
lots. Note that for each agent, each meeting is assigned iftegedt value in
order to satisfy the intra-agent mutual exclusion constr&etween agents, the
variables corresponding to the same meeting are assigmedatine value in
order to satisfy the inter-agent agreement constraint.

Variables and Participants Solution:

M;: A

m;ﬁiz Ay [M [M [Mg] |

Mi;Ag' Ay | M, Mg M

Ms: A% A Ay Mg] L
values: T1 T, T3 Ty

Fig. 1. Meeting Scheduling as the Multiagent Assignment Problem.

2.3 IL-MAP: MAP in Incremental, Limited Information Exchan ge
Domains

We further extend the scheduling problem to introduce thé/IIAP problem
in which agents must solve MAP in an incremental fashion evhihiting the
information they can exchange. These two features areitledanext.

Incremental In an incremental MAP, new variables and associated congtra
are added to the problem over time and must be integratecaimexisting
assignment. In meeting scheduling for example, new meetamge over
time and must be scheduled in the context of an existing dakein addition
to the elements of MAP defined above, in the incremental eergie are
also given:

— Sinit = {(Vl, dl), (VQ, dj), ey (Vm, dk)} is an initial solution.

— Vi1 is a new variable to be assigned a value.

— participant{V,,,+1) C Ais a set of agents who are assigned the variable

Vinat-

The key difficulty that arises in incremental MAP is that ¢ixig assign-
ments may need to be changed in order to successfully accdaimthe
new variable but it is difficult to determine in advance whidtanges will
result in a set of valid schedules.

Limited Information Exchange Although agents must exchange some infor-
mation in order to obtain feasible solutions, the informiatexchange pro-
cess is limited due to the distributed nature of the problerparticular, we
assume the following condition.

— Agents do not communicate information about a variable entgggwho
are not participants in that variable.

For example, the id of a variable, its current value, or thdigipants in
the variable are not communicated between agents who atsotiopartic-
ipants in the variable. A key challenge is to schedule dffelst under this
condition.

procedure initiate(lM;):

)
()
@)
(4)
®)
(6)
@)

initiator(M;) «— A;

t— GetTimeslot(M;)

if tis null:
return

status{/;,t) < PENDING

for each Aj € attendees(M;):
send (PROPOSEM;, t, A;) to A

procedur e when recei ved(PROPOSE,
M;, t, initiator):

(8)
9)
(10)

(11)
(12)
(13)
(14)
(15)
(16)
17)
(18)
(19)
(20)

if existsM}, where status{/y, t) is PENDING:

reply — IMPOSSIBLE
else ifexists M}, where
status{//y, t) is CONFIRMED:
if BumpingRule(M;, My) is true:
status{/y,t) — BUMPED
status{/;,t) — PENDING
reply< PENDING
else
reply— IMPOSSIBLE
else
statusi/;,t) «— PENDING
reply<— PENDING
send (REPLY, Mj, t, reply, A;) to initiator

pr ocedur e when recei ved(REPLY,
M;, t, reply, Attendee):

(21)
(22)

(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)

agentView{/; t,Attendee) < reply

if exists t’ wherev A, € attendees(M;),

agentView(\/;, t', Ay) is PENDING

and statusi/;, t') is PENDING
statusf/;, t') «— CONFIRMED
resol ved(M;)
for each Ay € attendees(M;):

send (CONFIRM, M;, t') to A

if existsM}, where statusi/y,t’) is BUMPED:

reschedul e(My)
else
t” — GetTimeslot(M;)
if t"is null:
resol ved(Mj;)
for each Aj € attendees(M;):
send (FAIL, M;)to Ay
else
status{/;,t") — PENDING
for each Aj € attendees(M;):
send (PROPOSEM;, t", A;)to Ay

procedure when recei ved(CONFIRM, M;, t):
(39) status{/;, t) — CONFIRMED

(40) resol ved(M;)

(41) if existsM}, where status{/y,t) is BUMPED:
(42) r eschedul e(My)

procedure when recei ved(FAIL, M;):
(43) resol ved(M;)

procedure when recei ved(RESCHEDULE M;):
(44) reschedul e(M;y)

procedure reschedul e(M;):

(45) if A; equalsinitiator(M;):
(46) if exists t where status(; t) is
BUMPED or CONFIRMED:
(47) status{/;, t) — IMPOSSIBLE
(48) for each Aj € attendees(M;):
(49) for each t where agentView{/;, t,Ax) is
IMPOSSIBLE or PENDING:
(50) agentView(/;, t ,A) — POSSIBLE
(51) initiate(M;)
(52) else
(53) send (RESCHEDULE Mj) to initiator (Mj)

procedure resol ved(M;):
(54) for each twhere status{/;, t) is PENDING:

(55) status{/;, t) — POSSIBLE
(56) if exists M}, where statusi/y, t) is BUMPED:
(57) statusi/y, t) « CONFIRMED

Fig. 2. Algorithm for AgentA;

3 A Solution Technique for IL-MAP in Meeting Scheduling

We are interested in solution techniques for IL-MAP in thatext of distributed
meeting scheduling. We first describe a basic negotiatenméwork upon which
our techniques are applied. Next, we describe the problerasaheduling ex-
isting meetings. Finally, we present our approach for mgkirs rescheduling
decision effectively.

3.1 Basic Negotiation Protocol

Sen and Durfee [9] describe a basic negotiation protocatieeting scheduling
in which agents negotiate imunds Each meeting has a designated initiator
who manages the negotiation of the meeting by proposingstiane collecting
responses from the other attendees in a sequence of roaretsch round, each
attendee responds with a PENDING (accept) or IMPOSSIBLEdtemessage
for the proposed time. The initiator collects the respomsesch round and does
a set intersection to try to find a mutually acceptable tirha.time is found, the
meeting is CONFIRMED (scheduled) in one additional round e process
terminates. Otherwise, the process continues in roundkthatinitiator runs
out of times to propose in which case the process terminatedailure.

We adopt a variant of this basic protocol in which attendeeay tentatively
bump a CONFIRMED meeting in favor of a new meeting in order dordase
the possibility of scheduling failure. We say it is tentativbumped because an
agent waits until the new meeting is confirmed in the bumpeediot before
initiating rescheduling of the bumped meeting. If the nevetimgy is confirmed
in some other slot or fails to be scheduled, the bumped ne&ine-instated
into its original slot. If an agent needs to reschedule a mgeif which it is not
the original initiator, it sends a RESCHEDULE message toitfiteator, who
will be responsible for restarting a negotiation episoddlie meeting.

Details of the algorithm are shown in Figure 2. Two functiéhgTimeslot
and BumpingRule are purposely left unspecified in Figure @etTimeslot
returns a free timeslot from the calendar or null if one doetsaxist. This func-
tion encapsulates a local optimization routine which raalkthe free timeslots
according to a complex set of user preferences, and retoen®p ranked time.
Further discussion is out of scope of this paper and we rbferdéader to [6]
for more details. ThéBumpingRule function returns true or false, and encap-
sulates the reasoning of the agent about whether one meitingdd be bumped
for another. A technique for making this decision is desaliin rest of this next
section.

3.2 The Problem of When to Reschedule

A key algorithmic decision to be made is when to bump an exgstneeting

in favor of a proposed meeting. More specifically, an attendemust make a
rescheduling decision when it receives a proposal for mgétl; at time slotl;

but A; already has a meetiny, confirmed in slof/;. A; has to decide between
accepting the proposal or rejecting it. If the agent decidegxcept the proposal,

it may need to reschedul&/, with the other attendees. This rescheduling may
cause the other attendees in turn to bump other meetingshveain result in
cascading disruption costs throughout the set of agentsaltarnative is for4;

to reject the proposal fab/y, but this entails risk also because the scheduling of
M7 may ultimately fail. It is difficult to determine in advancéigh is the better
decision because other people’s schedules are not didusigrvable.

Fixed strategies such as always rejecting or always bunfpihtp be effec-
tive. Table 1 shows a comparison of the average performahtdedwo fixed
strategies. (The exact experimental set-up is describedoire detail in Sec-
tion 5. These results are with 20 agents who have initialncile densities of
85%.) The “failures” column shows that for the Never-Bumpatggy a mu-
tually free timeslot could not be found in 49 out of 50 casdse Ttimeouts”
column shows that for the Always-Bump strategy the negotiafailed to ter-
minate after a given amount of time (10 minutes) in 50 out ot&€es. In these
cases, a cascading effect caused many meetings to be bumipedtimately a
maximum time limit was reached.

Table 1. Empirical analysis of two strawman strategies illustratee need for intelligent
rescheduling techniques

Strategy RoundsMsgg FailuregTimeoutg
Never-Bump | 6.88 | 44 | 49/50 -
Always-Bump 614 (2736 - 50/50

3.3 Modeling Scheduling Difficulty

We propose a method for making rescheduling decisions icwadgents use a
model of “scheduling difficulty” with other agents. Such netglcan be given
to an agent or they can be learned by the agent over time.drptper we are
interested in how a scheduling difficulty model, once olgdincan be used by
an agent to improve rescheduling decisions. Also, we naertiore complex
models of scheduling difficulty are possible than the onesgméed here. How-
ever, such models require more effort to construct and ategnaranteed to

A4

Fig. 3. A model of relative scheduling difficulty with four agents;, A3,A4 and As.

improve scheduling. We opt for the following model which @ngputationally
convenient and can be shown to improve scheduling perfazenan

Let SD; be a number denoting tteeheduling difficultyof an agent4;, i.e.,
if SD; > SD;, then scheduling a meeting with agefitis expected to be more
“difficult” than with agentA;. SD is measured in scheduling difficulty “units”.
We use this factor to encapsulate the many relevant feathe@<ontribute to
scheduling difficulty with another agent. Assuming thatreagent is operating
on behalf of a humarn§' D could take into account factors such as stubbornness
or accessibility to email communication. We will considetendar density as
associated with position in a organization as a key facter.définek; ; as the
relative difficulty for scheduling a meeting with; versus scheduling a meeting
with A;. It makes natural sense for this relation to be multiplieatnd transi-
tive. That is, for three agentd,, A3, A4, we require thaks 3 x k3 4 = kg 4.

Example: Figure 3 showsA;’s model of relative scheduling difficulty with
a group of four other agentd,,A3,A4, andAs. The arrow fromAs to A4 with
magnitude 3 represents the relati®W 4, = 3 x SDg,, i.e., scheduling a meet-
ing with A4 is 3 times “more difficult than” scheduling a meeting witl3.

Given a model of scheduling difficulty, we now have a way torteh deci-
sion rule for when to reschedule a meeting in favor of anotBéren a meeting
M;, Ay, computes the difficulty of schedulingy/; as

Difficulty(M;) = > SD; (1)
A;€cattendees(M;)—{ Ay}

Finally, the bumping rule is given as follows. An agent bunapmeeting
M; in favor of a meeting/; if and only if the followingBumpingRuléM;, M)
evaluates tarue;

Difficulty(M;) < Difficulty(M;) 2

4 Example of a Meeting Scheduling Negotiation

We describe an example scheduling negotiation episodévingoan agent4;.
Figure 3 showsA;’s model of relative scheduling difficulty with four other
agentsA,, A3z, A4, and As. Details of the negotiation using this model is shown
in Figure 4. Each box represents the state of agkr$ calendar at a given
time. Arrows denote incoming and outgoing messages. Eadsage is 3-
tuple of meeting id, time, and meeting status, where statstherpossible,
pending, bumped, confirmed impossible In this examplegattendees(M1) =
{41, Ag, A3}, attendees(M2) = { A1, A4}, andattendees(M3) = { A1, As}.

At time 1, A; has meeting M1 currently confirmed at time 10 am and re-
ceives arequest from, who is the initiator of meeting M2. The time proposed
is 10 am, which conflicts with M14; must now decide whether to rejedt,’s
proposal, or accept it and bump meeting M1. Referring to leiguand Equa-
tion 1, A; computes the scheduling difficulty of M1 89Dy + SD3 =141 =2
and the scheduling difficulty of M2 a§D, = 3. Since Difficulty(M1) <
Difficulty(M2), A, decides to bump.

At time 2, A, changes the status of M1 to bumped, and sets status of M2 as
pending for 10 am, and a response is senti{o At time 3, as an example of
concurrencyA; receives a request froms for 10 am for a new meeting M3. At
time 4, A; responds impossible since 10 am is already pending for MaliRg
meetings are never bumped (only confirmed meetings can bpdul)mAt time
5, A1 hears back frond, that M2 should now be confirmed for the previously
proposed time of 10 am. At time 6!, sets the status of M2 to confirmed, and
begins the rescheduling of M1 by proposing a new time to theroattendees
A, and As. (This example has assumed tigtis the initiator of M1. If it were
not, then in our protocold; would have sent a message to the initiator of M1
indicating that 10 am is now impossible, and the initiatotuldobe responsible
for restarting the negotiation and rescheduling M1). Atdiify A; hears back
from A, that 11 am is pending in its calendar for meeting M1. At time4§,
records this information in its current state. At time 9 arij 4, hears back
from A3 and records the response. At time M, has now heard back from
all attendees for meeting M1, and all have agreed on 11A4nsends the final
confirmation message to all attendees. We end the exampethamrealize that
since A; or A3 may have bumped meetings at 11 am to accommodai®
request for meeting M1, the scheduling episode may not be ove

5 Experimental Results

We present experimental results comparing rescheduliregegies that use a
model of “scheduling difficulty” with other agent versusagirgies that do not. In

A4
i M2,10am,possible?

Ad
T M2,10am,pending

A5
i M3,10am,possible?

A5
T M3,10am,impossible

M1,10am,confirmed

M2,10am,pending
M1,10am,bumped

M2,10am,pending
M1,10am,bumped

M2,10am,pending
M1,10am,bumped

Time 1

Time 2

Time 3

Time 4

A4
i M2,10am,confirmed

A2 A3

T T M1,11am,possible?

A2
i M1,11am,pending

M2,10am,pending
M1,10am,bumped

M2,10am,confirmed
M1,11am,pending

M2,10am,confirmed
M1,11am,pending

M2,10am,confirmed
M1,11am,pending
A2,M1,11am,pending

Time 5

Time 6

Time 7

Time 8

A3
i M1,11am,pending

A2 A3
T T M1,11am,confirmed

M2,10am,confirmed
M1,11am,pending
A2,M1,11am,pending|

M2,10am,confirmed

M1,11am,pending
A2,M1,11am,pending|
A3,M1,11am,pending

M2,10am,confirmed
M1,11am,confirmed

Time 9

Time 10

Time 11

Fig. 4. An example negotiation between an agent and four other sgentls, A, and As.

the first strategy, denotedtt, agents simply compare the number of attendees
and bump the meeting with fewer attendees when there is aictonétween
two meetings. They do not use knowledge about other agentmking their
bumping decisions. In the second strategy, denstBd we assume that agents
know the rank of other attendees and use this information akenbumping
decisions, i.e., they can assign a “scheduling difficulty&ach attendee.

5.1 Experimental Setup

We evaluate each strategy by averaging measurements ouari@n of “runs”.

Each run consists of two phases: a problem generation ploflseiéd by a
problem solving phase. We describe each phase in turn. lexpariments, we
report measurements from the problem solving phase only.

Phase 1The problem generation phase is centralized. We autonfigtigen-
erate a set of agentd each with a desired initial schedule density. Each
agent's calendar has 50 timeslots to simulate a 5 day 10iwotk week.
Next, we automatically generate and schedule meetingseleetwandom
subsets of the agents until all calendars are filled to thesirdd density.
The attendees of a given meeting are chosen according tof@mnian-
dom distribution. The number of attendees for a given mgenchosen
according to a distribution in which meetings of more peapieless likely
than meetings with fewer people. Every meeting has at leasattendees.
Finally, we generate one additional new meetirg,, 1 that must be sched-
uled in the problem solving phase. The attendees of the nestimgeare
chosen to be a random subset of the agents. In our experiniemtsumber
of attendees of the new meeting is fixed to 4. One of them isorahdcho-
sen to be the initiator. Every generated problem is ensuh@ve a solution.

Phase 2 The problem solving phase is completely distributed. Thal goto
find a timeslot for the new meeting\/,,,.1 } while successfully reschedul-
ing any bumped existing meetings. That is, the goal is to fiméssign-
ment of timeslots to meetings i U {M,,,.1 } that satisfy the intra-agent
and inter-agent constraints. We measure numb&ilkireswhich is defined
as the number of meetings i U {M,,+1} unassigned a timeslot after a
given amount of time. Failures may occur either becauseritiator gives
up scheduling the meeting or a max time elapses. Note thatuhmer of
failures in a given run can be greater than one when multigetmgs are
bumped and fail to be rescheduled.

5.2 Experiments in a Hierarchical Agent Organization

Human organizations typically have hierarchies in whiahleir ranked people
have denser calendars than lower ranked ones. We hypothasthe density of

an agents calendar and thus her organizational rank, is @ gealictor of the
difficulty of scheduling with that person.

To evaluate our hypothesis, we begin with an extreme casemmestwo-
level organization hierarchy. We divide agents into two &dgize groups of
“busy” and “not busy” agents, where the initial density ofiedules is fixed to
90 percent and 30 percent, respectively. The schedulirfiguwltlyy model used
by the S D strategy in this scenario is defined$8y,,s, = 3 x SDyonbusy-

Figure 5 contrasts two strategies as we increase the tatabeuof agents.
The graph shows thé& D strategy is more effective in terms of preventing
scheduling failures than thétt strategy. At 50 agents, theD strategy results
in a failure rate of 0.28 on average, while the simpler sthatétt results in 0.76
failures on average. Failure rate is computed by summingtingber of failures
over all runs and then dividing by the total number of runs. 850 runs for
each datapoint where each run follows the methodology tbestabove. This
graph shows that the use of our scheduling difficulty modelhke to reduce
scheduling failures. Also, the high failure rate caused byantrolled cascad-
ing of bumps, as we saw in Table 1 for the Always-bump stratisggvoided.

Next, we evaluate the effect of varying our scheduling dittic model in
the busy/non-busy hierarchy. We use a scheduling difficuliodel defined as
SDpysy = k X SDponpusy @and examine the effects of varyikg The same set
of scheduling problems are used for each valué:,ofe., the only difference
is the rescheduling decision rule used by the agents. Weceitpst changes in
performance will level off as the scheduling difficulty miplter & is increased.
This is because after some point, an increase o longer modifies an agents
rescheduling decisions. For example, a meefihgwith 4 non-busy attendees
will be bumped in favor a meeting/, with one busy attendee whén= 5.
M will continue to be bumped it is increased. Thus increasirigshould
stop having an effect on agent decision making at some peigiire 6 shows
empirical data consistent with our hypothesis. An orgaioreof 10 agents was
used. Each datapoint represents the average over 50 ruagrdph shows that
the effect on failure rate levels off as predicted.

Finally, we experiment with a more complex scheduling diffig model
where there are four levels rather than just two. We use thamzation hier-
archy shown in Figure 7 with 8 agents in each level, for a tofeB2 agents.
We experiment with four levels with initial schedule derestof 90,70,50,30
percent respectively. We defiteD;, = 2 x SDy,, . Thatis, the difficulty of
scheduling with an agent at levels twice as difficult as scheduling with an
agent at level + 1. The empirical results over 500 runs are shown in Figure 8.
The failure rate is reduced from 0.28 using tAé strategy to 0.02 using the

Number of Scheduling Failures
0.8

0.7 \\\) e
06 e

05

04

03 /

0.2

Avg Number of Failures

010 _eo— i

h . . .
4 10 20 30 40 50
Number of Agents

Fig. 5. Comparison of two rescheduling strategies (Att, SD) as atfan of organization size.
The average number of meetings that failed to be schedukgtbisn.

Effect of Multiplier on Failure Rate
0.6

0.4

0.2

Average Number of Failures

0
1 2 3 4 5 6 7 8 9 10
Scheduling Difficulty Multiplier (k)

Fig. 6. Effect of increasing value of scheduling difficulty muliigd on scheduling performance.
The average number of meetings that failed to be schedukdtbisn.

SD strategy. We can conclude that thé strategy significantly reduces the

number of scheduling failures.

6 Conclusion

We have modeled the multiagent meeting scheduling probteenfarm of dis-
tributed constraint reasoning in which agents must assiget @f values to a
set of variables. We presented a novel approach to the pnoiplevhich agents
use given or learned “scheduling difficulty” models of otlagients in order to
decide when to change their existing assignments in ordactept proposals
from others. We have shown that this approach controls thmuatrof bumping
so that the negotiation is able to terminate in a given amotitne, while also
reducing the scheduling failure rate over an alternativeregch that does not
take into account such models. In future work, we are inteteim how an agent
can automatically learn these models from past negotidtistory.

References

1. C.Bessire, A. Maestre, and P. Meseguer. Distributedmymbacktracking. Innternational
Joint Conference on Al Workshop on Distributed Constraiesa$oning 2001.

Hierarchy Level and Calendar Density

Scheduling Difficulty

L1: 90% sp, =8
L2: 70% SD, =4

L3: 50% SD3 =2

L4: 30% Sh, =1

Fig. 7. Agent hierarchy where higher ranked agents have highendafedensities.

32 Agent Four Level Hierarchy
0.5

Avg Number of Failures
o
Y
(&

Att SD
Rescheduling Strategy

Fig. 8. Comparison of two rescheduling strategies (Att, SD) in a fevel organization hierarchy.
The number of meetings that failed to be scheduled (avenage500 run) is shown.

2. Eugene C. Freuder, Marius Minca, and Richard J. Wallacwady/efficiency tradeoffs in
distributed meeting scheduling by constraint-based agetn IJCAI-2001 Workshop on
Distributed Constraint Reasoning001.

3. Leonardo Garrido and Katia Sycara. Multi-agent meetitgeduling: Preliminary experi-
mental results. IfProceedings of the First International Conference on MAlient Systems
(ICMAS’95) The MIT Press: Cambridge, MA, USA.

4. R. Mailler and V. Lesser. A mediation based protocol fatrilbuted constraint satisfaction.
In The Fourth International Workshop on Distributed ConstitdReasoning2003.

5. P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asyndas distributed constraint
optimization with quality guaranteegirtificial Intelligence 2004.

6. P.J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A peakassistant agent for calendar
management. IAgent Oriented Information Systems, (AOIS) 2(0D4.

7. Christos H. Papadimitriou and Kenneth Steigli@ombinatorial optimization: algorithms
and complexity Prentice-Hall, Inc., 1982.

8. Sandip Sen and Edmund Durfee. A Contracting Model foriBlexDistributed Scheduling.
Annals of Operations Researdb:195-222, 1996.

9. Sandip Sen and Edmund H. Durfee. A formal study of disteluneeting scheduling. In
Group Decision and Negotiatiorolume 7, pages 265—-289, 1998.

10. M.C. Silaghi, D. Sam-Haroud, and Boi Faltings. Asynctmas search with aggregations. In
Proceedings of National Conference on Atrtificial Intellige 2000.

11. M. Yokoo. Distributed Constraint Satisfaction:Foundation of Coogtéon in Multi-agent
SystemsSpringer, 2001.

