
CMRadar: A Personal Assistant Agent for Calendar
Management

Pragnesh Jay Modi, Manuela Veloso, Stephen F. Smith, Jean Oh

Department of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213
{pmodi,mmv,sfs,jeanoh}@cs.cmu.edu

Abstract. Personal assistant agents have long promised to automate routine ev-
eryday tasks in order to reduce the cognitive load on humans.One such routine
task is the management of a user’s calendar. In this paper, wedescribe CMRadar,
a calendar management system that is a significant step towards achieving the en-
during vision of assistant agents. CMRadar is an implemented system with wide-
ranging capabilities for supporting email exchange, multiagent negotiations and
schedule optimization based on user preferences. The motivation is to develop
an end-to-end system for use by real users to obtain data to facilitate learning.
Having now completed an initial prototype which we believe is the first end-
to-end agent for calendar management, we present as contributions our architec-
ture design, the communication language used to tie system components together,
and initial simulation experiments that isolate negotiation cost a key factor to be
logged and predicted in order to improve performance.

1 Introduction

One of the more compelling visions for agents research is thedevelopment of
“personal assistant agents” that are tasked with making people and organiza-
tions more efficient by autonomously handling routine taskson behalf of their
users [6] [7] [3]. Most recently, several researchers including ourselves have
embarked on a large research project, called The Radar Project [8], whose over-
all goal is to develop a personalized agent that is able to assist its user in a
wide range of everyday tasks. Within this larger project, weare concerned with
the more focused task of managing a user’s calendar. While isolated aspects of
calendar management have been investigated before [9] [10][5] [4], in this pa-
per, we present CMRadar, acompleteagent with capabilities ranging across the
full spectrum of calendar management, from natural language processing of in-
coming scheduling-related emails, to making autonomous scheduling decisions,
to negotiating with other users, to user interfacing and visualization. Although
many research issues remain, we believe CMRadar is the first end-to-end agent
for automated calendar management.

A key contribution of the design of CMRadar is the specification of a basic
representation, called a Template, for communicating calendar scheduling re-
lated information. The Template data structure is used as the language for the
communication between the components in CMRadar and as the “glue” that
binds them together. In addition, Templates are also used tonormalize unfor-
matted natural language emails into a machine readable format. We offer the
Template data structure as a flexible approach to the generaldesign of a meet-
ing scheduling agent.

The CMRadar architecture contributes a modular design in which the core
scheduling functions of the agent are separated from the multiagent aspects of
calendar management. Rather than an approach that tightly couples schedule op-
timization and negotiation, CMRadar has a separate Managercomponent which
handles the sending and receiving of messages from other agents and more gen-
erally, manages the negotiation with others. The Manager then communicates
via Templates with a separate Scheduler component that handles the core op-
timization problems. We found that this modular architecture facilitates the in-
tegration of existing scheduling systems and indeed, a corecomponent of CM-
Radar is the Ozone scheduler [11] originally designed for and used in several
real-world logistics planning domains.

The primary underlying emphasis of the Radar project is to learn to improve
performance, adapt to unexpected situations and to customize to different users.
The emphasis on learning is reflected in our design of the CMRadar architecture
in which all components read and write data to a central knowledge base that
can be used by a separate learning process to provide feedback to the decision
making components (see Figure 1). Indeed, it is the need to collect real-world
data to support learning that drives our development of a complete end-to-end
agent.

In anticipation of learning, this paper also presents simulation experiments
in which we isolate negotiation cost as a key factor that should be logged in
order to facilitate the construction of high quality schedules while avoiding high
negotiation costs. We present empirical results in which anagent that remembers
negotiation costs and takes them into account when decidingwhether to bump
a meeting outperforms more simple approaches.

2 The CMRadar Agent

CMRadar is developed as a personalized agent that interactswith other users or
agents. Figure 1 shows the overall architecture of CMRadar with its functional
modules. Dotted lines represent components not yet implemented. We present
two main modules in the coming sections, namely the Manager and the Sched-

Fig. 1.Architecture of a single user’s CMRadar

uler. In this section, we overview the complete architecture, briefly describing
each of the modules.

Extractor: We assume that multiagent interaction in calendar meeting schedul-
ing occurs through email message exchange. The Extractor isresponsible
for parsing email messages into atemplatenormalized format represent-
ing the meeting request or reply to a request (see Section 4).The email
messages can be sent directly by other Radar agents or by users in natu-
ral language. We have followed research on applying state-of-the-art natural
language parsing techniques,1 as well as successfully defining and applying
special purpose parsing rules for language specific to meeting scheduling.2

Figure 2 shows examples of such domain-specific language parsing rules.

duration: [“for” | “last”] <digits> [“hr(s)” | “min(s)”]
timeslots: [“at” | “before” | “after”] <time-exp>

: <time-exp> “to” <time-exp>
: <time-exp> “-” <time-exp> //ex: ”10:00 - 11:00”

time-exp: <1-2 digits>”:” <2 digits> //ex: ”10:00”, ”6:00”
: <1-2 digits>”:” <2 digits> <tag>
: <1-2 digits> <tag> // ex: ”10 am”, ”1 pm”

tag: [“am” | “a.m.” | “pm” | “p.m.”]

Fig. 2. Example grammar rules for converting emails to Templates.

Manager: Calendar management is in its essence a multiagent problem as
meetings involve more than one person. The Manager module inCMRadar

1 We thank Donna Gates, Lori Levin, and Benjamin Han for their NLP work.
2 We thank Kerry Hannan for her NLP work.

explicitly handles the multiagent aspects of calendar management, including
flexible negotiation with other agents and control of email threads. Meeting
scheduling is a complex process dependent on many factors, and different
users schedule meetings with other users according to many different strate-
gies. We view this variety of possible multiagent interactions similar to a
playbookapproach that we have previously developed in robot soccer [2].
The Manager can represent and reason about several different multiagent
(team) strategies and learn to select the ones that are more effective when
interacting with other specific agents.

Scheduler: The core task of meeting scheduling involves determining times for
the meetings. The Scheduler module in CMRadar handles all the time anal-
ysis. It receives (or initiates) a specific request for a meeting and returns the
user’s time availability by considering the user’s preferences and its calen-
dar with different kinds of commitments. Calendar management is handled
by the Scheduler under a rich set of soft and hard constraints, and agents can
reason truthfully and rationally about their preferences towards optimizing
the general social welfare.3

Calendar Data and Display: A human user is used to maintaining a calendar
using the existing available COTS calendars. Our Calendar Data and Dis-
play module aims at having CMRadar use the same calendar programs. The
current system is integrated with MS Outlook as shown in Figure 3.4

Fig. 3.A single user’s CMRadar integrated with MS Outlook

3 We thank Elisabeth Crawford for her initial work on addressing this problem under a game
theoretical approach.

4 We thank Andrew Faulring and Brad Meyers for the integrationof CMRadar with MS Out-
look.

Learning Although not yet part of the system, learning is necessary because
obtaining ill-structured user preferences and customizing behavior to differ-
ent users by hand is infeasible. The agent must acquire much of its required
knowledge about its specific user over time through experience. The current
CMRadar, as we present in this paper, is the base step towardsa complete
CMRadar agent which will be truly a learning agent.

3 Template Data Format

A Template is a special-purpose language we have constructed for all the multi-
agent communication related to meeting scheduling in CMRadar. For communi-
cation with other agents or humans, templates are convertedto and from natural
language emails using the Extractor and Generator. We have found the Template
representation to be extremely flexible for not only inter-agent communication
but also for gluing components together within an agent.

As shown in Figure 4, a Template consists of a number of fields and we
discuss three of the main ones:timeslots, attendantsandpurposes.

– Timeslots: This is a list of individual time slots, each of which contains a
feasible scheduling window, denoted by earliest-start-time and latest-finish-
time, and a specific desired slot denoted by start-time and finish-time. The
priority field is the preference for this slot relative to other time slots in the
template. Each time slot has an associated status field whosevalue is taken
from {possible,impossible,pending,confirmed}. The “(im)possible” value is
used to indicate the (un)availability of a time slot, “pending” indicates that a
time slot is currently reserved by an on-going negotiation and finally, “con-
firmed” indicates that the meeting has been scheduled and thetime slot can-
not be used for another meeting without triggering a rescheduling negotia-
tion.

– Attendants: This is a list of all participants of the meeting. Each attendee
has an associated priority level that can be used to indicatethe person’s
relative importance to the meeting.

– Purposes:This field is used to hold general text related to the meeting.
Of note is the predefined-kind field which references an existing taxonomy
of meetings in the knowledge base, e.g., project-meeting, faculty-meeting,
advisor-meeting, etc. This field is used by the Scheduler to inform schedul-
ing decisions, e.g., prefer to schedule faculty-meetings on Friday.

We have found in the development of CMRadar that this template-based
communication is notable for its flexibility where a Template can be interpreted
according to the context of the current negotiation. For example, when an agent

receives a new template containing a time slot with status “pending”, it is inter-
preted as a proposal to meet at that time. Conversely, when anagent receives a
template that is a reply to a previous proposal containing a time slot with status
“pending”, the agent interprets it as an affirmative reply toits previous request.
Templates are currently used for single occurrence meetings. Representation of
repeatingmeetings, i.e., “Every Monday at 2:00 pm” is not yet available, but
we envision extending the template to define a set of keywordssuch as “every”,
“every other”, “monthly”, etc, to represent this type of meeting.

(template
(meeting-id MT5) (msg-id MGS1205)
(timestamp 2003-12-17[15:04 -0500])
(initiator sfs@cs.cmu.edu)
(duration 3600) (location NSH1305)
(time-slots

(time-slot
(earliest-start-time 2003-12-17[15:00 -0500])
(latest-finish-time 2003-12-17[16:00 -0500])
(start-time 2003-12-17[15:00 -0500])
(finish-time 2003-12-17[16:00 -0500])
(priority 1)
(status confirmed)))

(attendants
(attendant (id sfs@cs.cmu.edu) (level 1.0))
(attendant (id mmv@cs.cmu.edu) (level 1.0)))

(purposes
(purpose (predefined-kind project-meeting)

(description “Radar project meeting”)
(special-note nil))))

Fig. 4.Example of a CMRadar template

4 Manager

The purpose of the manager is to interact with other users andagents in ser-
vice of scheduling meetings. These interactions can be verycomplex requiring
sophisticated decision making by the agent. To illustrate the complexity of the
problem, we describe a meeting scheduling episode between four users shown
in Figure 5 which highlights many of the key decisions to be made by an agent.

The Y-axis in Figure 5 shows four users each with a level of priority as
shown in parentheses. The priority of a user represents his or her rank relative to
others in the organization. At time t1, User 3 proposes (via an email message)
to User 4 a meeting M1 at 10 am. Although the calendars of each agent are

not shown, let us assume that User 4 has a meeting M2 already confirmed with
Users 1 and 2 for 10 am. Because User 3 has a high priority, User4 wishes to
accommodate User 3’s request and so tries to reschedule meeting M2 to another
time. At t2 and t3, User 4 sends proposals to reschedule M2 for12 pm. At t4, we
see that User 1 enters into negotiations with others to attempt to accommodate
User 4’s request, while at t5, User 2 responds to User 4. At t6,User 4 receives a
request for a new meeting. At t7, User 1 responds to User 4 by counter proposing
a range of times, indicated preferences but not a hard constraint. User 4 chooses
a time within the given range and re-proposes to User 2 (the other attendee of
M2). At t9, User 2 responds affirmatively and at times t10,t11,t12 User 1 is able
to finally confirm both meetings M1 and M2.

To successfully execute this scenario requires the following key competen-
cies.

– Multiple Thread Management: A key challenge is the management of
multiple inter-linked negotiation threads. Indeed, performing such “multi-
linked negotiations” [12] effectively is an outstanding research issue in mul-
tiagent systems. As illustrated by the interactions between meeting M1 and
M2 in our scenario, the decision to accept a meeting proposalfor a given
time may depend on the result of other negotiations. Furthermore, others
may not respond immediately to requests or may never respondat all. The
agent must be able to keep track of the status of different negotiation threads
and their interactions and make timely decisions.

– Context-Dependent Negotiation Strategies:The agent must be flexible
and able to adapt its decision making depending on the context of the cur-
rent meeting negotiation and its participants. For example, we saw that User
4 chose to accommodate User 3’s request by bumping meeting M2which
resulted in a renegotiation with others. In other scenarios, it may be better to
refuse User 3’s proposal. Indeed, this type of decision cannot be a static one
but must take into account the current context. The appropriate strategy to
use in a given situation depends on very rich context information including
local user preferences, the other participants of the meeting, the history of
the negotiations with those people, and the history of the current negotiation
itself.

– Explanation: The agent must be able to keep the user informed of the status
of on-going negotiations and explain scheduling decisionswhen asked. For
example in our scenario, if User 4 queries her agent as to why meeting M2
has been rescheduled, the agent should be able to respond that it was due
to request for a meeting M1 from User 3. This competency is crucial for
usability and trust by humans.

In our current system, the Manager responds to requests for meetings on its
user’s behalf by querying the Scheduler (described in the next section) for
free time slots. The Manager can display and update the status of meetings
via the MS Outlook Calendar interface. The Manager currently uses a sim-
ple fixed negotiation strategy in which an initiator always proposes a single
time slot and a receiver either accepts it or rejects it in which case the ini-
tiator re-proposes. Limited forms of rescheduling decisions are made where
lower priority meetings are bumped in favor of higher priority ones. In next
steps, we will expand these capabilities with more sophisticated negotiation
strategies and learn to adaptively choose the appropriate negotiation strategy
using a playbook strategy [2].

Fig. 5. Example of a complex negotiation

5 Scheduler

The Scheduler is the component within CMRadar responsible for representing
and managing the user’s calendar. Whereas the Manager handles the negoti-
ation with other calendar agents, the scheduler reasons about the user’s con-
straints and preferences to determine the best options in a given meeting context.
The CMRadar Scheduler has been built using the Ozone [11], anincremental,
constraint-based scheduling framework previously used todevelop a number
of complex logistics planning applications [1]. Ozone is designed specifically
from a continuous scheduling mindset, where schedules evolve incrementally
over time as new requirements are received, priorities change and unexpected
conflicts arise. This orientation makes it ideally suited for the problem of calen-
dar management.

Within CMRadar, the Scheduler provides basic support for both (1) respond-
ing to meeting requests and (2) assisting in initiation of meeting requests. In both
cases, the action of the Scheduler is to generate options that are consistent with
the constraints specified in the triggering message and maximize satisfaction of
known user preferences. In more detail, the Scheduler’s response to a meeting
request (originating either from another agent or the user herself) proceeds in
three steps (see Figure 6):

9 10 11 12 1 2 3 4 5 6

12/18/03

9 10 11 12 1 2 3 4 5 6

a)

9 10 11 12 1 2 3 4 5 6

c)

Valueslot = w1•pref1 + w2•pref2 + …wn•prefnb)

Fig. 6. Responding to a Request

– Generate feasible meeting options:The input meeting request template
specifies a set of acceptable time periods (in the simplest case, an earliest
start timeestm and a latest finish timelf tm) together with any constraints
on meeting duration. By default, a feasible option is any time slot that sat-
isfies these constraints and is currently not booked for another purpose. If
these constraints yield no options, the Scheduler will relax the constraint that
existing meetings must be respected, and consider pre-emption of lower pri-
ority meetings (currently a function of attendees and meeting type). Other
more complex resolution strategies (e.g., shrinking the durations of one or
more existing meetings) are also possible.

– Collect and evaluate preferences:The scheduler maintains representations
of various meeting attendants (including the user) , meeting groups, meet-
ing types, etc., which provides a backbone for organizing known meeting
preferences. Using the parameters of the template as indicies into this rep-
resentation, the set of preferences relevant to the requestare collected. Each
option is then evaluated and assigned a rating (discussed inmore detail be-
low), indicative of how well each satisfies this set of preferences.

– Select option(s):According to the current response strategy in force, the
highest valued option or then highest valued options are returned.

As suggested above, a preference assigns autility to a given meeting op-
tion, reflective of how well it is satisfied. Utilities are defined to span the range
[−1, 1], with 1 implying that the preference is completely satisfied, 0 that it is
neutral, and -1 indicating that the option is intolerable. Apreference also has an
intrinsic importancein relation to other preferences, a number between 0 and 1.
In a given option evaluation context, the importance valuesof all relevant pref-
erences are normalized to produce the set of weights for computing the overall
rating of a given option (see Figure 6). One aspect of this normalization involves
striking a balance between those preferences held by the user and those held by
other meeting participants.

The set of preferences that must be accounted for in meeting scheduling are
quite diverse, and we have devised representations that allow specification of
several broad classes. In addition to simple interval preferences (e.g., I prefer to
meet from 2:00PM to 3:00PM, piece-wise linear curves can be use to specify
more complex time-of-day preferences (e.g., afternoon is best, late morning is
acceptable but never before 9:00 AM). More interesting are so-calleddynamic
preferences, which depend on the current state of the user’scalendar and change
as the calendar schedule evolves.

Figure 7 gives an example of a dynamic scheduling preference- a prefer-
ence for scheduling meetings back to back. On the left, the utility curve of the
preference is shown, indicating the level of satisfaction of the preference to be
a function of the percentage of total meetings over a given horizon that fall ad-
jacent to the option (i.e., time slot) under consideration.(In this case, adjacency
is defined to tolerate some, presumably small, time gaps.) Onthe right of Fig-
ure 7, a three meeting schedule is displayed to show the preference’s utility for
different options. The preference value for the time slot between Meeting 1 and
Meeting 2 is highest because it will make all four meetings back to back.

1

0
0 1
of adjacent meetings / # of total meetings

Back-to-Back-preference
of adjacent meetings / total # of meetings

TIME

1

0
Mtg1 Mtg2 Mtg3

(adjacent m1 m2):
(0 = m1st – m2et = T) V (0 = m2st – m1et = T),
where T: ignorable time gap between the two meetings

Fig. 7. Back-to-Back Preference

6 Empirical Results in Simulation

We investigate the effect of different scheduling strategies on system perfor-
mance in a simulation setting. The purpose of these experiments is to provide
guidance in further developing the CMRadar system by answering the question:
What data should be logged by a deployed CMRadar agent in order to help it
learn? Although a working prototype of CMRadar is completedas described in
this paper, we use simulations for our investigation because it allows large num-
bers of experiments to be done efficiently. Furthermore, CMRadar has not yet
been deployed to users so that in-situ studies may be done.

In the next section, we describe the experimental setup and the results ob-
tained. The results show that a scheduling strategy that explicitly takes into ac-
count negotiation costs outperforms other simpler strategies assuming that these
costs can be perfectly known. Of course, predicting negotiation costs can be a
difficult challenge in the real world and is one of the key issues that we will
investigate next. However, the results presented in this section are significant
because they show that recording past negotiation costs andlearning to predict
them would be valuable since they can be used to improve system performance.

6.1 Experimental Setup

While CMRadar is responsible for making many different calendar management
decisions, this section focuses on one key decision relatedto meeting scheduling
in which the agent must decide in which time slot to put a particular meeting.
This decision is complicated by the fact that multiple meetings may compete for
the same time slot. For example as we saw in Figure 5, M2 occupied a time slot
(10 am) that was desired by a new higher priority meeting M1. The agent must
decide whether to assign the time slot to M1 and “bump” M2 and reschedule it,
or keep M2 where it is and put M1 somewhere else. The decision to bump M2
incurs cost because it requires sending messages to the other attendees with a
request to reschedule and waiting for responses. These responses may not come
immediately because the other attendees may in turn need to bump other meet-
ings. If these costs are large, it may be better for the agent to not bump M2 and
instead find an alternative time slot for M1. Note that it is difficult to determine
in advance which is the better decision because the costs incurred for each de-
cision are not known and because other people’s schedules and preferences are
not directly observable.

To investigate this issue, we use the following model. Letcalendar =
{slot1, slot2, ..., slotn} be the set of time slots in a user calendar andM =
{M1,M2, ...,Mm} be a set of meetings. The task of the agent is to determine
a schedule in which no more than one meeting is in a given time slot. Let the

function sched : calendar → M be a schedule that maps time slots to meet-
ings. For each meeting, the user has a preference ordering over all time slots.
Let V i

p (Mj) denote the user preference for putting meetingMj in sloti. For a
given schedulesched, let Vp(sched) =

∑
sloti∈calendar V i

p (sched(sloti) = Mj)
denote the total quality of the schedule. Finally, the assignment of a meeting to
a time slot incurs some negotiation cost which can be a complex function of the
other attendees of the meeting and the time slot. LetCi

n(Mj) be the cost for
putting meetingMj in sloti. We assume that each meeting has a unique desired
slot where there is zero cost if it is scheduled in that slot. The “desired slot” mod-
els a time that is proposed by other attendees. That is, when an agent receives
a request “Can you meet at 10 am?”, there is no negotiation cost for scheduling
at 10 am because presumably the requester is free at that time. So we assume
Ci

n(Mj) = 0 if sloti is the desired slot forMj . Finally, the total cost of a sched-
ule is given byCn(sched) =

∑
sloti∈calendar Ci

n(sched(sloti) = Mj). While
this model is clearly limited in many respects, it provides asimple yet effective
approach for investigating alternative decision-making strategies.

6.2 Evaluating Strategies

Using the above model, we now present empirical results for three different
decision-making strategies:Greedy, BumpingandNcost. In the simplest Greedy
strategy shown in Figure 8, an agent only inserts meetings into free slots and
never backtracks on these decisions. If the desired slot fora particular meeting is
already taken, the meeting is inserted into an alternative time slot that is both free
and highest-ranked according to local preferences. For notputting the meeting
in the desired slot, the agent incurs a negotiation cost as shown in line 6 of
Figure 8.

procedure GreedyStrategy(Mi, desiredSlot)
(1) if desiredSlot is not null and is free:
(2) putMi into desiredSlot
(3) else:
(4) timeslot← best free slot forMi

according to preferences
(5) putMi into timeslot
(6) ci← actual cost of negotiating with

other attendees forMi

(7) Cn = Cn + ci

Fig. 8. Greedy Meeting Scheduling

The Bumping strategy shown in Figure 9 is more complex because it bumps
meetings out of their desired slots if a new meeting is more preferred. However,
the decision to bump or not is made exclusively using local preferences and does
not take into account negotiation costs that may be incurred.

procedure BumpingStrategy(Mi, desiredSlot)
(1) if desiredSlot is free:
(2) putMi into desiredSlot
(3) else:
(4) Mj ← current meeting in desiredSlot
(5) vj ← preference forMj in desiredSlot
(6) vi← preference forMi in desiredSlot
(7) if vi > vj : // bumpMj

(8) putMi into desiredSlot
(9) GreedyStrategy(Mj , null)
(10) else:
(11) GreedyStrategy(Mi, null)

Fig. 9. Scheduling with Bumping

-20

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7

V
p

-
C

n

Time

Vp - Cn over time

Greedy
Bumping

NCost

 0

 50

 100

 150

Greedy NcostBumping

V
p

-
C

n

Scheduling Strategy

Difference between schedule quality
 and negotation cost

(a) (b)

Fig. 10. The NCostStrategy, which trades off local preference (Vp) with negotiation cost (Cn),
outperforms a strategy that schedules only in free slots (Greedy) and one that only uses prefer-
ences (Bumping). (b) shows the finalVp - Cn for the time series data shown on (a).

Finally, the NCost strategy shown in Figure 11 takes into account both local
preferences and predicted negotiation costs. As shown in line 9, an existing
meetingMj is bumped in favor of meetingMi only if the preference forMi

minus the cost for renegotiating forMj is greater than preference forMj minus
the cost for renegotiating forMi.

procedure NCostStrategy(Mi, desiredSlot)
(1) if desiredSlot is free:
(2) putMi into Mi

(3) else:
(4) Mj ← current meeting in desiredSlot
(5) vj ← preference forMj in desiredSlot
(6) vi← preference forMi in desiredSlot
(7) ci← predicted cost of negotiating with

other attendees forMi

(8) cj ← predicted cost of negotiating with
other attendees forMj

(9) if vi − cj > vj − ci: // bumpMj

(10) putMi into desiredSlot
(11) GreedyStrategy(Mj , null)
(12) else:
(13) GreedyStrategy(Mi, null)

Fig. 11.Scheduling with consideration of negotiation costs

Figure 10 shows the empirical results averaged over 100 runs. In each run,
we use a calendar consisting of 9 one hour time slots (from 8 amto 5 pm) initial-
ized with 25% of the slots full. The agent is tasked with iteratively scheduling
meetings as they arise over time. The negotiation cost for a particular meeting is
modeled as a random number taken from [0,100]. The user preferenceV i

p (Mj)
is calculated as the priority ofMj divided by the distance ofsloti from slotpref ,
where priority is a random number taken from [0,100] andslotpref is a random
slot in the calendar. ThusVp andCn range from zero to 100 times the number
of meetings in the calendar. Figure 10 (a) shows how performance varies as 7
meetings are scheduled in sequence, while Figure 10 (b) shows that the final
schedule obtained using NCost strategy is superior in performance to the others
as measured by the quality of the resulting schedule (Vp) minus the negotiation
costs for obtaining that schedule (Cn). These results indicate that logging past
negotation costs and using them to predict future costs can be used to improve
performance.

7 Conclusion

We presented CMRadar, an implemented system for calendar management. CM-
Radar is a complete agent in the sense that it is able to facilitate meeting schedul-
ing across the entire spectrum from initiation to confirmation to rescheduling.

While we have thus far concentrated on breadth of functionality, in future work
we will develop more sophisticated reasoning within each component along
the dimensions of the key challenges discussed. CMRadar indeed presents a
challenging road map for future research in effective learning personal assistant
agents.

Acknowledgments

This work is supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHC030029. We thank the following people
for their work on CMRadar: Andrew Faulring, Brad Meyers, Kerry Hannan,
Lawrence Lee, Akiva Leffert, Elisabeth Crawford, Donna Gates, Benjamin Han,
and Lori Levin.

References

1. M.A Becker and S.F Smith. Mixed-initiative resource management: The amc barrel alloca-
tor. In Proceedings of the Fifth International Conference on Artificial Intelligence Planning
and Scheduling (AIPS-00), pages 32–41, Breckenridge CO, April 2000. The AAAI Press.

2. Michael Bowling, Brett Browning, and Manuela Veloso. Plays as effective multiagent plans
enabling opponent-adaptive play selection. InProceedings of the International Conference
on Automated Planning and Scheduling (ICAPS’04), 2004.

3. H. Chalupsky, Y. Gil, C.A. Knoblock, K. Lerman, J. Oh, D.V.Pynadath, T.A. Russ, and
M. Tambe. Electric elves: Applying agent technology to support human organizations. In
Proceedings of Innovative Applications of Artificial Intelligence Conference, 2001.

4. Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling: Preliminary experi-
mental results. InProceedings of the First International Conference on Multi-Agent Systems
(ICMAS’95).

5. N. R. Jennings and A. J. Jackson. Agent based meeting scheduling: A design and implemen-
tation. IEE Electronics Letters, 31(5):350–352, 1995.

6. Pattie Maes. Agents that reduce work and information overload. Communications of the
ACM, 37(7), 1994.

7. Tom M. Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David Zabowski.
Experience with a learning personal assistant.Communications of the ACM, 37(7):80–91,
1994.

8. The Radar Project. ”www.radar.cs.cmu.edu”, 2004.
9. Sandip Sen and Edmund H. Durfee. On the design of an adaptive meeting scheduler. In

Proc. The Tenth IEEE Conference on Artificial Intelligence for Applications, pages 40–46,
1994.

10. Sandip Sen and Edmund H. Durfee. A formal study of distributed meeting scheduling. In
Group Decision and Negotiation, volume 7, pages 265–289, 1998.

11. S.F. Smith, O. Lassila, and M.A. Becker. Configurable, mixed-initiative systems for planning
and scheduling. In A. Tate, editor,Advanced Planning Technology. AAAI Press, Menlo Park,
1996.

12. Xiaoqin Zhang and Victor Lesser. Multi-linked negotiation in multi-agent systems. InPro-
ceedings of the first international joint conference on Autonomous agents and multiagent
systems, 2002.

