CMRadar: A Personal Assistant Agent for Calendar
Management

Pragnesh Jay Modi, Manuela Veloso, Stephen F. Smith, Jean Oh

Department of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213
{pmodi,mmv,sfs,jeandi@cs.cmu.edu

Abstract. Personal assistant agents have long promised to automaieerev-
eryday tasks in order to reduce the cognitive load on hunans.such routine
task is the management of a user’s calendar. In this papates@ibe CMRadar,
a calendar management system that is a significant stepdswehieving the en-
during vision of assistant agents. CMRadar is an implentesystem with wide-
ranging capabilities for supporting email exchange, ragkit negotiations and
schedule optimization based on user preferences. The atiotivis to develop
an end-to-end system for use by real users to obtain dataildefe learning.
Having now completed an initial prototype which we beliegethe first end-
to-end agent for calendar management, we present as egran¥ our architec-
ture design, the communication language used to tie systempanents together,
and initial simulation experiments that isolate negatiattost a key factor to be
logged and predicted in order to improve performance.

1 Introduction

One of the more compelling visions for agents research isi¢éhvelopment of
“personal assistant agents” that are tasked with makinglpeend organiza-
tions more efficient by autonomously handling routine task$ehalf of their
users [6] [7] [3]. Most recently, several researchers iditig ourselves have
embarked on a large research project, called The RadarcP[@jewhose over-
all goal is to develop a personalized agent that is able tistaiss user in a
wide range of everyday tasks. Within this larger projectaneconcerned with
the more focused task of managing a user’s calendar. Whilatésl aspects of
calendar management have been investigated before [9[9ILE]], in this pa-
per, we present CMRadarcampleteagent with capabilities ranging across the
full spectrum of calendar management, from natural languymgcessing of in-
coming scheduling-related emails, to making autonomolisdiding decisions,
to negotiating with other users, to user interfacing andaligation. Although
many research issues remain, we believe CMRadar is theriulstoeend agent
for automated calendar management.

A key contribution of the design of CMRadar is the specifmatbf a basic
representation, called a Template, for communicatingncile scheduling re-
lated information. The Template data structure is used esatiguage for the
communication between the components in CMRadar and asgthe” that
binds them together. In addition, Templates are also usedtmalize unfor-
matted natural language emails into a machine readableafoive offer the
Template data structure as a flexible approach to the gedesain of a meet-
ing scheduling agent.

The CMRadar architecture contributes a modular design iiciwiine core
scheduling functions of the agent are separated from th&ageht aspects of
calendar management. Rather than an approach that tighibtes schedule op-
timization and negotiation, CMRadar has a separate Marcageponent which
handles the sending and receiving of messages from othetsaggd more gen-
erally, manages the negotiation with others. The Manager tommunicates
via Templates with a separate Scheduler component thatdsatite core op-
timization problems. We found that this modular architeetfacilitates the in-
tegration of existing scheduling systems and indeed, acamrgonent of CM-
Radar is the Ozone scheduler [11] originally designed fat ased in several
real-world logistics planning domains.

The primary underlying emphasis of the Radar project isaoi¢o improve
performance, adapt to unexpected situations and to cugtamdifferent users.
The emphasis on learning is reflected in our design of the GiRarchitecture
in which all components read and write data to a central kadge base that
can be used by a separate learning process to provide féettbte decision
making components (see Figure 1). Indeed, it is the needliectoeal-world
data to support learning that drives our development of apbet®m end-to-end
agent.

In anticipation of learning, this paper also presents sittimh experiments
in which we isolate negotiation cost as a key factor that khbe logged in
order to facilitate the construction of high quality schieduvhile avoiding high
negotiation costs. We present empirical results in whichgent that remembers
negotiation costs and takes them into account when decidiregher to bump
a meeting outperforms more simple approaches.

2 The CMRadar Agent

CMRadar is developed as a personalized agent that intevébtsther users or
agents. Figure 1 shows the overall architecture of CMRadl#rits functional

modules. Dotted lines represent components not yet impitadeWe present
two main modules in the coming sections, namely the Managgtlize Sched-

User :]gd-i[-oF--l I Calendar I
T

vo-o- -y L Display |
Other - i- = = = = Preferences
1 earning
Users ' Processes lem Frofiles '« Template
LI - L]

Base

|Generator|l M Schedul
Email Stream T

Template

Email Stream SmmmmmEmE 3
' Knowledge]
']
/' : !
te

Fig. 1. Architecture of a single user's CMRadar

uler. In this section, we overview the complete architegtinriefly describing
each of the modules.

Extractor: We assume that multiagent interaction in calendar meetingdul-
ing occurs through email message exchange. The Extractesp®nsible
for parsing email messages intat@mplatenormalized format represent-
ing the meeting request or reply to a request (see Sectiomhg).email
messages can be sent directly by other Radar agents or kg inseatu-
ral language. We have followed research on applying stiatlkesart natural
language parsing techniquesas well as successfully defining and applying
special purpose parsing rules for language specific to ngestiheduling.
Figure 2 shows examples of such domain-specific languagingaules.

duration: [“for” | “last”] <digits> [“hr(s)” | “min(s)”]
timeslots: [“at” | “before” | “after”] <time-exp>

: <time-exp> “t0” <time-exp>

: <time-exp> “-” <time-exp> //ex: "10:00 - 11:00”
time-exp: <1-2 digits>":" <2 digits> //ex: "10:00", "6:00"

1 <1-2 digits>"" <2 digits> <tag>

1 <1-2 digits> <tag> // ex: "10 am”, "1 pm”
tag: [“am” | “a.m.” | “pm” | “p.m.”]

Fig. 2. Example grammar rules for converting emails to Templates.

Manager: Calendar management is in its essence a multiagent prokdem a
meetings involve more than one person. The Manager mod@d/liRadar

1 We thank Donna Gates, Lori Levin, and Benjamin Han for theiPNvork.
2 We thank Kerry Hannan for her NLP work.

explicitly handles the multiagent aspects of calendar rpameent, including
flexible negotiation with other agents and control of emaiéads. Meeting
scheduling is a complex process dependent on many factmsjitierent
users schedule meetings with other users according to méeredt strate-
gies. We view this variety of possible multiagent interaiei similar to a
playbookapproach that we have previously developed in robot so@ter |
The Manager can represent and reason about several diffardtiagent
(team) strategies and learn to select the ones that are rfiective when
interacting with other specific agents.

Scheduler: The core task of meeting scheduling involves determinimgs for
the meetings. The Scheduler module in CMRadar handlesedlirtte anal-
ysis. It receives (or initiates) a specific request for a ingednd returns the
user’s time availability by considering the user’s prefexes and its calen-
dar with different kinds of commitments. Calendar managarishandled
by the Scheduler under a rich set of soft and hard constraintsagents can
reason truthfully and rationally about their preferenamgards optimizing
the general social welfaré.

Calendar Data and Display: A human user is used to maintaining a calendar
using the existing available COTS calendars. Our Calendda Bnd Dis-
play module aims at having CMRadar use the same calendarapnegThe
current system is integrated with MS Outlook as shown in FEigu*

Hello!
1 am the CMRADAR Manager for
Manuela Veloso
(mmv@cs.cmu.edu)

("Console | Megting o, | -
Press enterto schedule new meeting. I e s s s

1
2
300 [[Pectina Doy, Fansce]ean 7123
4
g
e

Enter >>>

Fig. 3. A single user's CMRadar integrated with MS Outlook

3 We thank Elisabeth Crawford for her initial work on addregsthis problem under a game
theoretical approach.

4 We thank Andrew Faulring and Brad Meyers for the integratblCMRadar with MS Out-
look.

Learning Although not yet part of the system, learning is necessacalme
obtaining ill-structured user preferences and custorgibehavior to differ-
ent users by hand is infeasible. The agent must acquire nfutshrequired
knowledge about its specific user over time through expeeiehhe current
CMRadar, as we present in this paper, is the base step towaroisplete
CMRadar agent which will be truly a learning agent.

3 Template Data Format

A Template is a special-purpose language we have condrtatall the multi-
agent communication related to meeting scheduling in CMiR&tbr communi-
cation with other agents or humans, templates are conviergad from natural
language emails using the Extractor and Generator. We bavelthe Template
representation to be extremely flexible for not only intgeat communication
but also for gluing components together within an agent.

As shown in Figure 4, a Template consists of a number of fietdsvae
discuss three of the main onésneslots attendantsandpurposes

— Timeslots: This is a list of individual time slots, each of which contia
feasible scheduling window, denoted by earliest-staretand latest-finish-
time, and a specific desired slot denoted by start-time aighfirme. The
priority field is the preference for this slot relative to ettime slots in the
template. Each time slot has an associated status field wiahse is taken
from {possible,impossible,pending,confirmedhe “(im)possible” value is
used to indicate the (un)availability of a time slot, “pemgli indicates that a
time slot is currently reserved by an on-going negotiatiod finally, “con-
firmed” indicates that the meeting has been scheduled artohibeslot can-
not be used for another meeting without triggering a resalivegl negotia-
tion.

— Attendants: This is a list of all participants of the meeting. Each atesd
has an associated priority level that can be used to inditeteperson’s
relative importance to the meeting.

— Purposes:This field is used to hold general text related to the meeting.

Of note is the predefined-kind field which references an iegjgaxonomy
of meetings in the knowledge base, e.g., project-meetamylfy-meeting,
advisor-meeting, etc. This field is used by the Schedulenftorin schedul-
ing decisions, e.q., prefer to schedule faculty-meetingBriday.

We have found in the development of CMRadar that this teragiased
communication is notable for its flexibility where a Templaan be interpreted
according to the context of the current negotiation. Fong{a, when an agent

receives a new template containing a time slot with statesdng”, it is inter-
preted as a proposal to meet at that time. Conversely, whegemt receives a
template that is a reply to a previous proposal containirigna slot with status
“pending”, the agent interprets it as an affirmative replyt$qrevious request.
Templates are currently used for single occurrence meetRgpresentation of
repeatingmeetings, i.e., “Every Monday at 2:00 pm” is not yet avaidaldut
we envision extending the template to define a set of keywsudk as “every”,

“every other”, “monthly”, etc, to represent this type of rtiag.

(template
(meeting-id MT5) (msg-id MGS1205)
(timestamp 2003-12-17[15:04 -0500])
(initiator sfs@cs.cmu.edu)
(duration 3600) (location NSH1305)
(time-slots
(time-slot
(earliest-start-time 2003-12-17[15:00 -0500])
(latest-finish-time 2003-12-17[16:00 -0500])
(start-time 2003-12-17[15:00 -0500])
(finish-time 2003-12-17[16:00 -0500])
(priority 1)
(status confirmed)))
(attendants
(attendant (id sfs@cs.cmu.edu) (level 1.0))
(attendant (id mmv@cs.cmu.edu) (level 1.0)))
(purposes
(purpose (predefined-kind project-meeting)
(description “Radar project meeting”)
(special-note nil))))

Fig. 4. Example of a CMRadar template

4 Manager

The purpose of the manager is to interact with other usersagedts in ser-
vice of scheduling meetings. These interactions can bea@mplex requiring
sophisticated decision making by the agent. To illustrhgecomplexity of the
problem, we describe a meeting scheduling episode betveegruers shown
in Figure 5 which highlights many of the key decisions to balenby an agent.
The Y-axis in Figure 5 shows four users each with a level obriyi as
shown in parentheses. The priority of a user represents hisrgank relative to
others in the organization. At time t1, User 3 proposes (vi@mail message)
to User 4 a meeting M1 at 10 am. Although the calendars of egehtaare

not shown, let us assume that User 4 has a meeting M2 alreafiynced with
Users 1 and 2 for 10 am. Because User 3 has a high priority, 4Jggshes to
accommodate User 3's request and so tries to reschedulenmi to another
time. At t2 and t3, User 4 sends proposals to reschedule ME2fpm. At t4, we
see that User 1 enters into negotiations with others to attéonaccommodate
User 4’s request, while at t5, User 2 responds to User 4. Al$6r 4 receives a
request for a new meeting. Att7, User 1 responds to User 4iloyteoproposing
arange of times, indicated preferences but not a hard eamisttyser 4 chooses
a time within the given range and re-proposes to User 2 (ther @ttendee of
M2). At t9, User 2 responds affirmatively and at times t1QfIAUser 1 is able
to finally confirm both meetings M1 and M2.

To successfully execute this scenario requires the follgwdey competen-
cies.

— Multiple Thread Management: A key challenge is the management of
multiple inter-linked negotiation threads. Indeed, perfimg such “multi-
linked negotiations” [12] effectively is an outstandingearch issue in mul-
tiagent systems. As illustrated by the interactions betwaeeting M1 and
M2 in our scenario, the decision to accept a meeting progosa given
time may depend on the result of other negotiations. Furtbes, others
may not respond immediately to requests or may never resgoalil The
agent must be able to keep track of the status of differerdtismpn threads
and their interactions and make timely decisions.

— Context-Dependent Negotiation StrategiesThe agent must be flexible
and able to adapt its decision making depending on the cootdke cur-
rent meeting negotiation and its participants. For exanvpdesaw that User
4 chose to accommodate User 3's request by bumping meeting/tith
resulted in a renegotiation with others. In other scenaiti@say be better to
refuse User 3’s proposal. Indeed, this type of decision @ a static one
but must take into account the current context. The apptgostrategy to
use in a given situation depends on very rich context inféionancluding
local user preferences, the other participants of the mgetihe history of
the negotiations with those people, and the history of tmeeatinegotiation
itself.

— Explanation: The agent must be able to keep the user informed of the status

of on-going negotiations and explain scheduling decisishen asked. For
example in our scenario, if User 4 queries her agent as to wasting M2
has been rescheduled, the agent should be able to respdridwaa due
to request for a meeting M1 from User 3. This competency isiafldor
usability and trust by humans.

User 1 (.5)
User 2 (.25)
User 3 (1.0)

User 4 (.5)

5

In our current system, the Manager responds to requestsdetimys on its
user’s behalf by querying the Scheduler (described in thx¢ section) for
free time slots. The Manager can display and update thessthtmeetings
via the MS Outlook Calendar interface. The Manager curyamgks a sim-
ple fixed negotiation strategy in which an initiator alwayspgoses a single
time slot and a receiver either accepts it or rejects it inclvldase the ini-
tiator re-proposes. Limited forms of rescheduling decisiare made where
lower priority meetings are bumped in favor of higher ptipones. In next
steps, we will expand these capabilities with more soptattd negotiation
strategies and learn to adaptively choose the approprgietiation strategy
using a playbook strategy [2].

3
3
M2, Resch. M2 1 1 M2,2
» Resch. | M2, 12pm 3 M2, 5 4pm
12pm? okay 2-4pm M2, 2pm? 2pm confirmed
B better okay A
Mi, M3, MI, 10am
wltam? wipm? confirmed
'l 'l 'l 'l 'l 'l 'l Il 'l Il 1 'l -
| 11 | | | 1 | T 1T 7 Time
t1 263 ¢ t5 t6 t7 8 9 t10t11¢12
Fig. 5. Example of a complex negotiation
Scheduler

The Scheduler is the component within CMRadar responsdsleepresenting
and managing the user’'s calendar. Whereas the Managerelatid negoti-
ation with other calendar agents, the scheduler reasond &t® user's con-
straints and preferences to determine the best optionswea meeting context.
The CMRadar Scheduler has been built using the Ozone [1ihcaemental,

constraint-based scheduling framework previously usedeielop a number
of complex logistics planning applications [1]. Ozone isidaed specifically
from a continuous scheduling mindset, where schedules/ewotrementally

over time as new requirements are received, priorities gihamd unexpected
conflicts arise. This orientation makes it ideally suitedtfee problem of calen-
dar management.

Within CMRadar, the Scheduler provides basic support ftn fib) respond-
ing to meeting requests and (2) assisting in initiation oétimg requests. In both
cases, the action of the Scheduler is to generate optioharénaonsistent with
the constraints specified in the triggering message andmizxisatisfaction of
known user preferences. In more detail, the Schedulefsorese to a meeting
request (originating either from another agent or the usesdif) proceeds in
three steps (see Figure 6):

12/18/03 , pum ., oo @
E; 10 1 '12 1 2 3 4 5 6

DD SN

9 10 11 12 1 2 3 4 5 6
b) Value,, = wyepref, + wyepref, + ...w,epref,

) e,

9 10 11 12 1 3 4 5

1

Fig. 6. Responding to a Request

— Generate feasible meeting optionsThe input meeting request template
specifies a set of acceptable time periods (in the simplest, G earliest
start timeest,,, and a latest finish timéft,,) together with any constraints
on meeting duration. By default, a feasible option is anyetstot that sat-
isfies these constraints and is currently not booked forremgiurpose. If
these constraints yield no options, the Scheduler wilkrttia constraint that
existing meetings must be respected, and consider preamustiower pri-
ority meetings (currently a function of attendees and megtype). Other
more complex resolution strategies (e.g., shrinking thatithns of one or
more existing meetings) are also possible.

— Collect and evaluate preferencesThe scheduler maintains representations
of various meeting attendants (including the user) , mgagioups, meet-
ing types, etc., which provides a backbone for organizingwkm meeting
preferences. Using the parameters of the template aseésditio this rep-
resentation, the set of preferences relevant to the reguesbllected. Each
option is then evaluated and assigned a rating (discussmiia detail be-
low), indicative of how well each satisfies this set of prefares.

— Select option(s):According to the current response strategy in force, the
highest valued option or the highest valued options are returned.

As suggested above, a preference assiguaslity to a given meeting op-
tion, reflective of how well it is satisfied. Utilities are ded#d to span the range
[—1, 1], with 1 implying that the preference is completely satisfi@édhat it is
neutral, and -1 indicating that the option is intolerablgréference also has an
intrinsic importancein relation to other preferences, a number between 0 and 1.
In a given option evaluation context, the importance vahfes| relevant pref-
erences are normalized to produce the set of weights for gtingpthe overall
rating of a given option (see Figure 6). One aspect of thiswatization involves
striking a balance between those preferences held by tnenddhose held by
other meeting participants.

The set of preferences that must be accounted for in meeatiregaling are
quite diverse, and we have devised representations tluat afpecification of
several broad classes. In addition to simple interval peefees (e.g., | prefer to
meet from 2:00PM to 3:00PM, piece-wise linear curves candgeta specify
more complex time-of-day preferences (e.g., afternoorest, blate morning is
acceptable but never before 9:00 AM). More interesting areadleddynamic
preferences, which depend on the current state of the usdesdar and change
as the calendar schedule evolves.

Figure 7 gives an example of a dynamic scheduling preferercprefer-
ence for scheduling meetings back to back. On the left, tiigyuturve of the
preference is shown, indicating the level of satisfactibthe preference to be
a function of the percentage of total meetings over a giveizdio that fall ad-
jacent to the option (i.e., time slot) under considerat{gmthis case, adjacency
is defined to tolerate some, presumably small, time gapsth®mnight of Fig-
ure 7, a three meeting schedule is displayed to show therprefe’'s utility for
different options. The preference value for the time sld¢tveen Meeting 1 and
Meeting 2 is highest because it will make all four meetingskiia back.

Back-to-Back-preference
of adjacent meetings / total # of meetings

(adjacent m1 m2):
(0 =milst—m2et =T) V(0 =m2st—mlet =T),
where T: ignorable time gap between the two meetings

|
|:> Mgl | Mtg2| Mtg3 D
0

TIME

0
of adjacent meetings / # of total meetings

Fig. 7. Back-to-Back Preference

6 Empirical Results in Simulation

We investigate the effect of different scheduling stragegin system perfor-
mance in a simulation setting. The purpose of these expatsne to provide
guidance in further developing the CMRadar system by arisgyéne question:
What data should be logged by a deployed CMRadar agent im tvdeelp it
learn? Although a working prototype of CMRadar is compledsdiescribed in
this paper, we use simulations for our investigation beedalows large num-
bers of experiments to be done efficiently. Furthermore, @NHR has not yet
been deployed to users so that in-situ studies may be done.

In the next section, we describe the experimental setuptendesults ob-
tained. The results show that a scheduling strategy thaicakptakes into ac-
count negotiation costs outperforms other simpler straseggssuming that these
costs can be perfectly known. Of course, predicting netioticosts can be a
difficult challenge in the real world and is one of the key esuhat we will
investigate next. However, the results presented in thiSoseare significant
because they show that recording past negotiation costkeamting to predict
them would be valuable since they can be used to improvemysteformance.

6.1 Experimental Setup

While CMRadar is responsible for making many different nder management
decisions, this section focuses on one key decision relateeting scheduling
in which the agent must decide in which time slot to put a paldir meeting.
This decision is complicated by the fact that multiple magdimay compete for
the same time slot. For example as we saw in Figure 5, M2 oeduptime slot
(10 am) that was desired by a new higher priority meeting Mie agent must
decide whether to assign the time slot to M1 and “bump” M2 astihedule it,
or keep M2 where it is and put M1 somewhere else. The decisitmumnp M2
incurs cost because it requires sending messages to theatttiedees with a
request to reschedule and waiting for responses. Thesensspmay not come
immediately because the other attendees may in turn neadrp bther meet-
ings. If these costs are large, it may be better for the agembtt bump M2 and
instead find an alternative time slot for M1. Note that it ifficult to determine
in advance which is the better decision because the costg@ucfor each de-
cision are not known and because other people’s scheduliesraferences are
not directly observable.

To investigate this issue, we use the following model. t@endar =
{sloty, slots, ..., slot,, } be the set of time slots in a user calendar ddd=
{My, My, ..., M,,} be a set of meetings. The task of the agent is to determine
a schedule in which no more than one meeting is in a given tlotelset the

function sched : calendar — M be a schedule that maps time slots to meet-
ings. For each meeting, the user has a preference orderergathtime slots.
Let Vpi(Mj) denote the user preference for putting meetidgin siot;. For a
given scheduleched, letV,,(sched) =31 ccatendar Vyp (Sched(slot;) = M)
denote the total quality of the schedule. Finally, the assignt of a meeting to
atime slot incurs some negotiation cost which can be a coniptection of the
other attendees of the meeting and the time slot.dgt)/;) be the cost for
putting meetingV/; in slot;. We assume that each meeting has a unique desired
slot where there is zero cost if it is scheduled in that slbe Tesired slot” mod-
els a time that is proposed by other attendees. That is, whagent receives

a request “Can you meet at 10 am?”, there is no negotiatianf@oscheduling

at 10 am because presumably the requester is free at thatSmnee assume
Ci(M;) = 01if slot; is the desired slot fob/;. Finally, the total cost of a sched-
ule is given byCy,(sched) = 3~ 0. ccatendar C! (sched(slot;) = M;). While
this model is clearly limited in many respects, it providesraple yet effective
approach for investigating alternative decision-makitrgtegies.

6.2 Evaluating Strategies

Using the above model, we now present empirical results Haet different
decision-making strategieGreedy, BumpingndNcost In the simplest Greedy
strategy shown in Figure 8, an agent only inserts meetingsfiee slots and
never backtracks on these decisions. If the desired slatfarticular meeting is
already taken, the meeting is inserted into an alternative $lot that is both free
and highest-ranked according to local preferences. Fopuiting the meeting
in the desired slot, the agent incurs a negotiation cost aarshin line 6 of
Figure 8.

procedure G eedyStrat egy(M;, desiredSlot)
(1) if desiredSlot is not null and is free:

(2) put M; into desiredSlot

(3) else:

4) timeslot— best free slot foi\/;
according to preferences

(5) put M; into timeslot

(6) ¢; < actual cost of negotiating with

other attendees faV/;
(7) Cn = Cn + Cq

Fig. 8. Greedy Meeting Scheduling

Vp-Cn

The Bumping strategy shown in Figure 9 is more complex becalmimps
meetings out of their desired slots if a new meeting is moeégored. However,
the decision to bump or not is made exclusively using localggences and does
not take into account negotiation costs that may be incurred

procedur e Bunpi ngStr at egy(M;, desiredSlot)
(1) if desiredSlot is free:

2 put M; into desiredSlot

(3) else:

(4) M, < current meeting in desiredSlot
(5) v; « preference fol\/; in desiredSlot
(6) v; < preference foM/; in desiredSlot
@) if v; > v;: I bumpM;

(8) put M; into desiredSlot

9) GreedyStrategy{;, null)

(20) else:

(11) GreedyStrategy(;, null)

Fig. 9. Scheduling with Bumping

Vp - Cn over time Difference between schedule quality
and negotation cost
120 Greedy ——
100 | y 150
80 NCost —x—
60 L 6 100 N
40 i o
20 + > 50
0 L
b
-20 : : : : : : 0 : : :
0 1 2 3 4 5 6 7 Greedy Bumping Ncost
Time Scheduling Strategy
@) (b)

Fig. 10. The NCostStrategy, which trades off local preferenig) fvith negotiation cost,),
outperforms a strategy that schedules only in free sloted@y) and one that only uses prefer-
ences (Bumping). (b) shows the firfid) - C,, for the time series data shown on (a).

Finally, the NCost strategy shown in Figure 11 takes intmaatboth local
preferences and predicted negotiation costs. As showm@di an existing
meetingM; is bumped in favor of meeting/; only if the preference fon/;

minus the cost for renegotiating fad; is greater than preference faf; minus
the cost for renegotiating fav/;.

procedur e NCost Str at egy(M;, desiredSlot)
(1) if desiredSlot is free:

2) put M; into M;

(3) else:

4) M, < current meeting in desiredSlot

(5) v; « preference foM/; in desiredSlot

(6) v; < preference foM/; in desiredSlot

(7 ¢; «— predicted cost of negotiating with
other attendees faV/;

(8) ¢; < predicted cost of negotiating with
other attendees faV/;

9 if v; —c; > v; — ¢t [bumpd;

(10) putM; into desiredSlot

(11) GreedyStrategy{;, null)

(22) else:

(13) GreedyStrategy(;, null)

Fig. 11. Scheduling with consideration of negotiation costs

Figure 10 shows the empirical results averaged over 100 mreach run,
we use a calendar consisting of 9 one hour time slots (from ®dnpm) initial-
ized with 25% of the slots full. The agent is tasked with iteedy scheduling
meetings as they arise over time. The negotiation cost farticplar meeting is
modeled as a random number taken from [0,100]. The userrpr&fev;j(Mj)
is calculated as the priority dff; divided by the distance af ot; from slot,,. s,
where priority is a random number taken from [0,100] ah,,.. ; is a random
slot in the calendar. Thui, andC,, range from zero to 100 times the number
of meetings in the calendar. Figure 10 (a) shows how perfoceaaries as 7
meetings are scheduled in sequence, while Figure 10 (b)sshmat the final
schedule obtained using NCost strategy is superior in pagnce to the others
as measured by the quality of the resulting schedulg fiinus the negotiation
costs for obtaining that schedul€,(). These results indicate that logging past
negotation costs and using them to predict future costs earséd to improve
performance.

7 Conclusion

We presented CMRadar, an implemented system for calendegament. CM-
Radar is a complete agentin the sense that it is able tatédeilneeting schedul-
ing across the entire spectrum from initiation to confirmatio rescheduling.

While we have thus far concentrated on breadth of functitynah future work
we will develop more sophisticated reasoning within eacmponent along
the dimensions of the key challenges discussed. CMRadaeihgresents a
challenging road map for future research in effective le@ypersonal assistant
agents.

Acknowledgments

This work is supported by the Defense Advanced Researcled@sopgency
(DARPA) under Contract No. NBCHC030029. We thank the follayvpeople
for their work on CMRadar: Andrew Faulring, Brad Meyers, KeHannan,
Lawrence Lee, Akiva Leffert, Elisabeth Crawford, Donna&3aBenjamin Han,
and Lori Levin.

References

1. M.A Becker and S.F Smith. Mixed-initiative resource mgegraent: The amc barrel alloca-
tor. In Proceedings of the Fifth International Conference on Auitii Intelligence Planning
and Scheduling (AIPS-00pages 32—-41, Breckenridge CO, April 2000. The AAAI Press.

2. Michael Bowling, Brett Browning, and Manuela Veloso. Was effective multiagent plans
enabling opponent-adaptive play selection Phoceedings of the International Conference
on Automated Planning and Scheduling (ICAPS;@g04.

3. H. Chalupsky, Y. Gil, C.A. Knoblock, K. Lerman, J. Oh, DRynadath, T.A. Russ, and
M. Tambe. Electric elves: Applying agent technology to saphuman organizations. In
Proceedings of Innovative Applications of Atrtificial Inigénce Conferenge2001.

4. Leonardo Garrido and Katia Sycara. Multi-agent meetitgeduling: Preliminary experi-
mental results. IfProceedings of the First International Conference on MAlgient Systems
(ICMAS'95)

5. N.R. Jennings and A. J. Jackson. Agent based meetingudetgedd design and implemen-
tation. IEE Electronics Letters31(5):350-352, 1995.

6. Pattie Maes. Agents that reduce work and informationlosdr Communications of the
ACM, 37(7), 1994.

7. Tom M. Mitchell, Rich Caruana, Dayne Freitag, John McDattmand David Zabowski.
Experience with a learning personal assistabémmunications of the ACN87(7):80-91,
1994.

8. The Radar Project. "www.radar.cs.cmu.edu”, 2004.

9. Sandip Sen and Edmund H. Durfee. On the design of an adapieting scheduler. In
Proc. The Tenth IEEE Conference on Atrtificial Intelligenoe Applications pages 4046,
1994.

10. Sandip Sen and Edmund H. Durfee. A formal study of digtél meeting scheduling. In
Group Decision and Negotiatiprwolume 7, pages 265—289, 1998.

11. S.F.Smith, O. Lassila, and M.A. Becker. Configurableauiinitiative systems for planning
and scheduling. In A. Tate, edit@dvanced Planning Technolag¥AAl Press, Menlo Park,
1996.

12. Xiaoqin Zhang and Victor Lesser. Multi-linked negatiatin multi-agent systems. IRro-
ceedings of the first international joint conference on Aotoous agents and multiagent
systems2002.

