
Learning to Select Negotiation Strategies in Multi-Agent Meeting Scheduling

Elisabeth Crawford and Manuela Veloso
Computer Science Department, Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA, 15213

{ehc,mmv}@cs.cmu.edu

Abstract

In this paper we look at the Multi-Agent Meeting
Scheduling problem where distributed agents negotiate
meeting times on behalf of their users. While many ne-
gotiation approaches have been proposed for schedul-
ing meetings it is not well understood how agents can
negotiate strategically in order to maximize their users’
utility. To negotiate strategically an agent needs to learn
to pick good strategies for each agent. We show how the
playbook approach introduced by (Bowling, Browning,
& Veloso 2004) for team plan selection in small-size
robot soccer can be used to select strategies. Selecting
strategies in this way gives some theoretical guarantees
about regret. We also show experimental results demon-
strating the effectiveness of the approach.

Introduction
Personalized software agents for meeting scheduling have
the potential to reduce the daily cognitive load on computer
users. Scheduling a meeting can be a time consuming pro-
cess requiring many email messages to be composed and
read, and often old meetings to be moved to make room for
new meetings. Potentially, software agents can remove this
burden entirely by communicating with each other to sched-
ule meetings. Since user’s have ownership of their own cal-
endars and private preferences about meeting scheduling it
makes sense to approach this problem in a distributed man-
ner. Automated negotiation has been proposed as a method
for multiple agents to reach agreement on meeting times.
Negotiation approaches have many advantages over the open
calendar approach taken by Microsoft Outlook (Crawford &
Veloso 2004).

Typically negotiation protocols feature a meeting initia-
tor that makes proposals for the meeting time and collects
the proposals of all participants. Consider for instance the
following simplified protocol:

• while no intersection in proposals

– the initiator proposes some times and notifies the other
agents

– each agent proposes some times to the initiator

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this context, a negotiation strategy is a set of rules for de-
ciding what times to propose at each point in the process.
The space of possible negotiation strategies is extremely
large. Even if we restrict the space in some way, e.g. to
strategies that offer a fixed number, x, of new times per ne-
gotiation round, there are still a huge number of options. In
particular, there is a different strategy for each possible value
of x and then there are all the ways of combining these val-
ues of x with rules for deciding what particular times to of-
fer in each round. In developing software agents for meeting
scheduling we are faced with the problem of deciding which
negotiation strategies (taken from this huge space) agents
should consider as well as designing methods that the agents
can use to choose between these strategies when negotiating
a particular meeting.

In order to most effectively satisfy user preferences when
negotiating meetings we would like our agents to be able
to adapt their behavior according to which agent they are
negotiating with. There is a wide range of important ways
in which agents can differ. For instance, agents can repre-
sent users of vastly different levels of importance and busy-
ness, they can use very different negotiation strategies and
can have users with very different preferences about meet-
ing times. Clearly a strategy that works well for negotiating
with one agent may work very poorly for another. Poor strat-
egy choice can lead to meetings being scheduled at times the
user does not like, or to the negotiation process taking a very
long time. In general we would like an agent to maximize
their user’s utility by scheduling meetings at their users’ pre-
ferred times while minimizing the length of the negotiation
process according to their user’s preferences about this pos-
sible trade-off.

One method for deciding what strategy to use when ne-
gotiating with a particular agent is to use a model based ap-
proach that tries to construct a model of the agent and then
based on this model select a strategy. There are a number of
reasons why this approach would be difficult to use in prac-
tice. Firstly, obtaining an accurate enough model of another
agent is a very difficult learning problem since the only in-
teraction agents have is through the exchange of times when
they negotiate meetings. From this information it is hard
to make accurate conclusions about what times an agent
prefers, how busy the agent is, what negotiation strategy
it is employing etc. Secondly, to build a model of another

agent many training examples are required. Learning how
to negotiate is an intrinsically online problem and it is thus
preferable for the learning to occur online. Furthermore this
online aspect means there is a difficulty with statically map-
ping agent models to negotiation strategies. The best nego-
tiation strategy to use can depend on changing aspects of the
learning agent and the other agent, since as more meetings
are added to the agents’ calendars their behavior can change
even if their underlying strategy does not. Online algorithms
have the potential to adapt to these changing conditions.

In this paper we show how an agent can learn online
which strategies to use when negotiating with different
agents by observing its own rewards as opposed to trying
to model the other agents. Our approach is based on the
idea of plays introduced by Bowling, Browning and Veloso
(2004). Bowling et al. focus on the domain of robot soccer
(small-size league) where they equip a team with a series of
multi-agent plans called a playbook. The team plan to use
at a given point in time is selected according to a no-regret
learning algorithm. We show how we can apply these ideas
to the problem of learning how to negotiate with different
agents. Our experimental results demonstrate that this ap-
proach allows a learning agent to converge to sensible strate-
gies for negotiation with different fixed strategy agents. We
also show that an agent learning online using this approach
achieves a higher pay-off for its user than an agent using a
fixed strategy or randomizing over all the strategies in the
playbook.

Related Work
A variety of methods for reaching agreements on meeting
times have been proposed in the last ten years including ne-
gotiation based approaches e.g. (Jennings & Jackson 1995;
Sen & Durfee 1998; Gonzlez & Santos), Distributed Con-
straint Reasoning (DCR) approaches (Pragnesh Jay Modi
2005) and market based approaches (Ephrati, Zlotkin, &
Rosenschein 1994). In this section we describe work on the
first two methods looking in particular at how user prefer-
ences are dealt with.

Sen and Durfee (1998) conducted a probabilistic and sim-
ulation based analysis of negotiation strategies. The basic
framework they considered was:

1. Host announces meeting

2. Host offers some times

3. Agents send host some availability information

4. Repeat 2 and 3 until an intersection is found.

Similar protocols have been looked at by other re-
searchers, for example, (Jennings & Jackson 1995), (Gon-
zlez & Santos) and (Garrido & Sycara 1995), while (Shin-
tani, Ito, & Sycara 2000) looked at a more complex proto-
col. These negotiation approaches have handled user pref-
erences for meeting times in quite different ways. Shintani
et al. (Shintani, Ito, & Sycara 2000) propose a persuasion
based approach to negotiation. The persuasion mechanism
involves compromising agents adjusting their preferences so
that their most preferred times are the persuading agent’s

most preferred times. This method relies strongly on the co-
operation of the agents in complying with this protocol. Sen
et al.(Sen, Haynes, & Arora 1997) also look at user pref-
erences and show how voting methods can be used (within
a software agent) to evaluate different options for schedul-
ing a meeting when users have multi-faceted and possibly
competing preferences.

Garrido and Sycara (1995) and Jennings and Jackson
(1995) take the approach of allowing agents to not only pro-
pose meeting times but also to quantify their preferences for
proposals. The agent that is collecting the proposals then
makes decisions about meeting times based on the reported
utilities of all the meeting participants. This style of ap-
proach involves a lot of trust, since for the procedure to work
well all the agents must report their preferences truthfully.
While the approaches outlined are all concerned with user
preferences they differ from the work described here in that
we are interested in how an agent can negotiate strategically
in order to satisfy its user’s preferences.

Distributed Constraint Reasoning (DCR) approaches have
also been applied to multi-agent meeting scheduling. For ex-
ample Modi and Veloso (Pragnesh Jay Modi 2005) model
the meeting scheduling problem according to the DCR
paradigm and evaluate strategies for making bumping de-
cisions. The way in which agent’s decide when to bump
(i.e., move an existing meeting to accommodate a new meet-
ing) can have implications for the efficiency of the meet-
ing scheduling process. A meeting that is bumped must be
rescheduled and it is possible that in rescheduling a bumped
meeting more meetings will be bumped. Intuitively, if the
agents want the scheduling process to finish quickly, they
should try to bump meetings that will be easy to reschedule.
Similarly to the negotiation approaches the work on DCR
has not focused on how agents can act strategically, rather
the agents have been assumed to be cooperative.

Plays for Meeting Negotiation
In the context of small-size robot soccer (where an over-
head camera and an off-board computer allow for coordi-
nated team planning) Bowling et al. (2004) introduce the
notion of a play as a team plan. Each play must assign a
role to each of the robots e.g. one robot may be tasked with
attempting to shoot, another with guarding the team’s own
goal and so forth. Each play also has an applicability con-
dition that determines in what scenarios it applies and a ter-
mination condition that is used to determine when the play
has been completed and a new play needs to be selected. For
example an offensive play might be applicable whenever the
ball is in the opponent’s half of the field and be considered
to have terminated when a goal is scored, or the applicability
condition is violated.

The playbook captures all the plays that are available to
the team. Bowling et al. provide a simple language that
a human expert can use to add new plays. Typical play-
books consist of about 15 strategies. Playbooks are often
compiled just prior to a match in order to reflect the most
current knowledge the human experts have about the oppo-
nent team. During the course of a game, plays are weighted
according to their level of success or failure and the play to

use at each decision point is selected based on these weights.
The weights on plays are adapted in such away that regret
about play selection goes to zero in the limit. We describe
the process of weight adaptation in detail in the next section.

The meeting negotiation problem has a number of impor-
tant features in common with small-size robot soccer. In
both domains the space of available strategies is huge and it
is not possible for agents to adapt online if they must con-
sider the entire strategy space. Furthermore the environment
in both domains is dynamic, the models of the ‘opponents’
are unknown and online learning is required for good per-
formance. In this section we will discuss how we adapt the
plays formulation to the problem of learning how to negoti-
ate with different agents.

We can map the plays terminology from robot soccer to
the meeting scheduling problem. The plays correspond to
complete negotiation strategies, the opponent corresponds
to the agent the learning agent is negotiating with, and the
playbook is simply the set of negotiation strategies available
to the learning agent. Unlike in robot soccer, in the meeting
scheduling problem we are playing with multiple agents in
succession or possibly playing with multiple agents at the
same time and thus the learning agent must adapt strategy
selection for each of the different agents it negotiates with
simultaneously.

Each negotiation strategy has 4 elements, a rule for de-
ciding applicability, a rule for deciding at each negotiation
round what times to offer (if any) independent of the exact
proposals received, a rule for deciding which times (if any)
to offer based on the proposals received and a rule for decid-
ing when to give up. Figure 1 shows an example strategy,
Offer-k-b, that offers k new available times each round and
after b rounds starts taking into account the proposals it has
received. If necessary Offer-k-b will offer times that would
require an already scheduled meeting to be bumped. De-
pending on the values of k and b this strategy can be very
selfish and cause the negotiation to take a long time. As
such, if the ‘opponent’ agent is very important the strategy
is only applicable if the value of k is large and the value of b
is small.

Each time a new meeting needs to be scheduled if the
learning agent is an attendee it selects which strategy to use
according to the adapted playbook for the initiator agent. If
the learning agent is initiating the meeting it selects a pos-
sibly different negotiation strategy for communicating with
each attendee according to the adapted playbook for that at-
tendee. The learning agent considers the execution of a strat-
egy to be complete when (i) the meeting it was selected to
schedule has been added to the agent’s calendar and (ii) any
meetings that the learning agent is involved in that have been
bumped as a result of scheduling the new meeting have been
rescheduled for new times. A strategy is also considered
to have been completely executed if the learning agent has
given up on scheduling the new meeting or on reschedul-
ing a bumped meeting. Each time a strategy terminates the
playbook weights are updated according to the success of
the strategy.

In the next section we discuss how the learning agent
adapts playbook weights for negotiating with each other

1. APPLICABILITY: if importance(other-agent) >
very-important and (k < 20 and b > 5) return
false; else return true.

2. INDEPENDENT OFFER: in any negotiation
round offer my k most preferred, available, un-
offered times.

3. DEPENDENT OFFER: if negotiation round > b.
Apply the simple compromiser sub-strategy which
works as follows:

• If I am an attendee of the meeting, search for
any times proposed by the initiator that I am
available for but have not offered. If one or
more such times exist offer my most preferred
time. Else offer the time proposed by the ini-
tiator that contains the meeting with the fewest
participants out of all such proposed times.

• If I am the initiator rank all times proposed by
other agents according to the number of agents
that have proposed that time. Out of all the
times with the highest number of proposals if
any of these times are available, offer my most
preferred such time, otherwise offer the un-
available time containing the meeting with the
fewest participants.

4. ABANDON: if negotiation round > 50 return
true.

Figure 1: Offer-k-b negotiator

agent such that its regret about the selection of strategies
goes to zero in the limit under certain conditions.

Adapting weights and selecting strategies for
negotiating with different agents

For each ‘opponent’ agent the learning agent must learn
which strategies to select. The learning algorithm has
the following key components, (i) a rule for updating the
weights on strategies in the playbook and (ii) a rule for se-
lecting the strategy to apply based on these weights. Bowl-
ing et al. (2004) applied results in the literature on experts
problems (also commonly referred to as k-armed bandits
problems) to derive the rules required. We are able to use the
same rules for adapting weights on negotiation strategies. In
this section we briefly describe the approach and its basis
in the experts literature. For a more complete treatment we
refer to the reader to (Bowling, Browning, & Veloso 2004).

In the experts problem an agent choses actions or options
repeatedly based on the instructions it receives from a set
of experts. Each time the agent needs to make a choice it
selects which expert to listen to. In the traditional formu-
lation once the action or option has been selected the agent
receives a pay-off from that action. In addition the pay-offs
it would have received had it followed the advice of each of
the other experts is revealed. The performance of the agent

is measured by the notion of regret. Let the reward received
from following the advice of expert i at choice point p be
r

p
i . The regret of the agent after k choices have been made

is given by the following formula:

regretk = max
over experts i

k
∑

p=0

r
p
i −

k
∑

p=0

rp
xp

where xp denotes the expert the agent chose at choice point
p. Regret is simply the award achievable by always asking
the best expert minus the reward actually achieved. A desir-
able property of an experts algorithm is that average regret
goes to zero as the number of choices approaches infinity.
There exist algorithms for various formulations of the prob-
lem that achieve no-regret in the limit e.g. (Littlestone &
Warmuth 1989; Auer et al. 1995)

Bowling et al. (2004) show how algorithms for selecting
experts with no regret can be used to select plays. In the
context of plays (and in the context of selecting strategies
for negotiation) we need to use a different formulation of
regret that takes into account the fact that not all plays (or
strategies) are applicable at each choice point. This can be
done by using the notion of Sleeping Experts developed by
Freund et. al (1997). We say an expert is awake when it
is applicable at a particular choice point and asleep other-
wise. Following the notation used in (Bowling, Browning,
& Veloso 2004) we let a

p
i = 1 if expert i is awake at choice

point p and a
p
i = 0 otherwise. Then if ∆(n) is the set of

probability distributions over all n experts. We get the fol-
lowing formula for sleeping regret (SR) after k choices:

SRk =
(

maxx∈∆(n)

∑k

p=1

∑n

i=1 a
p
i

(

x(i)
P

n
j=1 x(j)ap

j

)

r
p
i

)

−
∑k

p=0 rp
xp

The first half of the formula simply quantifies the reward
the agent could have received if the best possible distribution
over awake experts had been selected at each choice point.

In the context of plays and negotiation strategies there is
one final difficulty. Unlike in the traditional experts problem
agents only find out the reward of the action they actually
take. In order to account for this Bowling et al. (2004) com-
bine elements of the Exp3 algorithm proposed by Auer et al
(Auer et al. 1995) (which handles the problem of unknown
rewards) with the sleeping regret approach of (Freund et al.
1997). We describe their approach here and use it to adapt
playbook weights for each ‘opponent’ agent and select the
strategy to use according to these weights.

Let Rk
i =

∑k

p=0 r̂
p
i . Where r̂

p
i = 0 if i not selected

at point p and r
p

i

Pr(xp=i) otherwise. We call the weight for

strategy i at decision point p, w
p
i and we let w

p
i = eR

p

i . The
value er

p

i is denoted as m
p
i and we refer to this value as the

multiplier and use it to adjust the weights according to the
reward received from carrying out the negotiation strategy
(or play). The probability that the strategy chosen at point p
denoted xp is strategy i is given by the following equation:

Pr(xp = i) =
a

p
i w

p
i

∑

j a
p
jw

p
j

Once strategy xp has been executed and the reward r
p
xp

received we update the weights as follows:

wt
i = ŵ

p
i .N

p
i

where ŵ
p
i = w

p−1
i for i not selected, but for i selected:

ŵ
p
i = w

p−1
i (mp

i)
1

P r(xp=i)

The N
p
i term is used to ensure that sleeping does not affect

a strategy’s probability of being chosen. N
p
i = 1 if a

p
i = 0

and otherwise:

N
p
i =

∑

j a
p
jw

p−1
j

∑

j a
p
j ŵ

p
j

To apply the approach to negotiation we need to decide
how we are going to set the multipliers. The multipliers
specify the degree to which the success or failure of a strat-
egy affects the weight. We base the multipliers on a model
of user utility. We let the utility a user derives from a nego-
tiation strategy take into account three elements:

1. the user’s preference for the time-of-day (tod) the new
meeting is scheduled for — val(tod).

2. the increase (or decrease) in utility caused by other meet-
ing in the calendar being moved, i.e. for all meetings
that were moved we say the agent’s utility is increased
by

∑

moved val(todnew) −
∑

moved val(todold).

3. the number of negotiation rounds r required to schedule
the new meeting and move any old meetings.

The user’s utility function is parametrized by two constants
α and β which specify the relative importance of time-of-
day valuations and negotiation cost. Formally a user’s utility
for the outcome of a negotiation strategy is modeled as:

U(i) = α(val(tod) +
∑

moved val(todnew)

−
∑

moved val(todold))

−βr

We use the user’s utility function and highest time-of-day
value to estimate the maximum possible utility a negotiation
strategy can achieve. We then set the multiplier according to
how the reward actually achieved relates to this maximum.
The multiplier is set according to the first row of Table 1
that applies. Also note that if the negotiation strategy fails
to schedule the new meeting, or to reschedule any bumped
meetings, a failure has occurred. Currently we use a multi-
plier of 0.25 for this case.

The bounds on regret obtained by using the plays ap-
proach are strongest if the ‘opponent’ agent is using a fixed
strategy and we assume that changes to the environment
(i.e., the calendars) are not affecting the rewards. If the other
agent is also learning, then in the terminology of (Auer et al.
1995), we are dealing with a non-oblivious adversary. As
such, since the playbook approach builds on Exp3, the theo-
retical bounds on regret are weaker.

Evaluation
In this section we describe how we have evaluated the ef-
fectiveness of using a plays approach to select negotiation
strategies.

U(i) > 0.75 ∗ maxU 1.75
U(i) > 0.5 ∗ maxU 1.5
U(i) > 0.25 ∗ maxU 1.25
U(i) > 0 1
U(i) > 0 − 0.25 ∗ maxU 0.75
U(i) > 0 − 0.5 ∗ maxU 0.5
U(i) > 0 − 0.75 ∗ maxU 0.25

Table 1: The multiplier used is given by the first row in the
table for which the left hand entry evaluates to true

Communication Protocol
We have created a simulation environment consisting of a
set of agents equipped with a common protocol for com-
municating about meetings. The protocol has three basic
stages: a negotiation phase, in which agents exchange pro-
posals, a pending stage, in which a time proposed by all the
agents is agreed upon, and a confirmation stage, after which
the meeting is entered into the agents’ calendars. Support
is also provided for bumping (canceling and rescheduling)
meetings. There are a number of different types of messages
that the agents exchange:
• meeting time proposals

• requests to bump meetings

• cancellation notices for meetings

• pending requests for times — when a meeting initiator
finds an intersection in proposals, it sends a pending re-
quest for one of the times in the intersection to each of the
participants.

• pending responses — when an attendee receives a pend-
ing request it responds with either:

– a pending acceptance and marks the meeting as pend-
ing, or

– a pending rejection (if the time is pending for another
meeting, we require that the agent reject the request).

• confirmation notices — sent out by the initiator when all
attendees reply to a pending request with a pending ac-
ceptance.

Negotiation Strategies
We have implemented a number of negotiation strategies
that comply with the protocol outlined. We use two of these
strategies in our experiments in this paper. The first strategy
— Offer-k-b was previously described (see Figure 1). This
strategy is parametrized and hence it in fact covers a large
number of distinct strategies. The second strategy we use is
called Availability-Declarer. This strategy can be very use-
ful in practice, particularly in situations where the agents are
very busy. The Availability-Declarer strategy is outlined in
Figure 2. The key feature of this strategy is that it offers all
the available times in the first week straight away. In subse-
quent negotiation rounds it does the same for later weeks.

Preferences
We use a simple model of time-of-day preferences in our ex-
periments. Each agent has a preference ordering over times

1. APPLICABILITY: if importance(other-agent)
>= moderately-important return true.

2. INDEPENDENT OFFER: in the first round offer
all available times for the current week, in second
round offer all available times for the following
week and so on until all available times up until
the last possible time for the meeting have been
offered.

3. DEPENDENT OFFER: if negotiation round >
5, apply the simple compromiser sub-strategy de-
scribed in Figure 1

4. ABANDON: if negotiation round > 50 return
true.

Figure 2: Availability Declaring Negotiator

in the morning, times in the middle of the day and times in
the afternoon. If for example, the agent prefers the morning,
then the middle of the day, and then the afternoon, times in
the morning are assigned a value of 3, times in the middle of
the day a value of 2 and times in the afternoon, a value of 1.

Experiments and Results
We have conducted a preliminary evaluation of the effective-
ness of using a plays based approach to select negotiation
strategies. Each of the experiments described in this sec-
tion consists of one learning agent and three fixed strategy
agents of varying preferences and busyness. The learning
agent has three strategies in its playbook — Availability-
Declarer, Offer-10-5 and Offer-3-5. In the experiments we
discuss, these strategies are always applicable.

In each experiment the agents schedule approximately 80
new two person meetings (we restrict our attention to two-
person meetings to simplify the discussion). The learn-
ing agent is an attendee (not an initiator) of each of these
80 meetings. We show how the learning agent’s playbook
weights converge to sensible strategies for each of the fixed
strategy agents.

In our first experiment the learning agent has a prefer-
ence for morning meetings, followed by midday meetings
followed by afternoon meetings. The α and β values of the
learning agent’s utility function are 4 and 0.1 respectively.
The agent’s calendar is approximately 25% full when the ex-
periment is started. Unlike the meetings we schedule in the
testing phase the initial meetings in the calendar can involve
any number of the agents.

Figure 3 shows how the learning agent’s playbook
weights adapt for Agent2. Agent2 starts out with a simi-
lar number of initial meetings to the learning agent, uses the
Availability-Declarer strategy and has the same time prefer-
ences as the learning agent. Figure 3 shows how the play-
book weights quickly converge to towards the Availability-
Declarer strategy. While the other two strategies are also
likely to work well in this instance, the Availability De-
clarer strategy offers the possibility resolving the negotiation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
tr

at
eg

y
w

ei
gh

ts

Number of meetings negotiated with Agent 2

Playbook weights over time for use with Agent 2

Availability Declarer
Offer-3-Negotiator

Offer-10-Negotiator

Figure 3: Weights adaptation for Agent2

faster. Since the learning agent and Agent2 have the same
preferences there is no strategic advantage to the learning
agent only releasing its availability slowly.

Figure 4 shows the weight adaptation for Agent3. Agent3
uses the Availability-Declarer strategy and starts out with a
similar calendar density to the learning agent, but with oppo-
site preferences. Agent3 most prefers afternoons, followed
by the middle of the day, followed by the morning. Fig-
ure 4 shows that the learning agent quickly establishes that
the Availability-Declarer strategy is less useful for negotiat-
ing with Agent3 than the Offer-10-5 and Offer-3-5 strate-
gies. After about 25 meetings have been scheduled the
weights converge on the the Offer-3-5 strategy. Note that
the Availability-Declarer strategy is a poor choice for use
with Agent3. When both agents negotiate with this strategy,
the initiator (always Agent3 in these experiments) is likely
to quickly find a large intersection of available times. The
initiator can choose its most preferred time in this intersec-
tion and since Agent3’s and the learning agent’s preferences
clash, the time chosen will likely be bad for the learning
agent. The learning agent has a clear strategic incentive
to declare its available times more slowly and in order of
preference. Since the learning agent’s utility function rates
achieving good times-of-day much higher than minimizing
the number of negotiation rounds, it converges on the Offer-
3-5 strategy rather than the Offer-10-5. This is despite the
learning agent’s calendar being quite full (93%), and hence
mutally available slots fairly rare, by the time the experiment
concludes.

Figure 5 shows the weight adaptation for Agent4. Agent4
has similar preferences to the learning agent, preferring mid-
day times, then mornings, and then afternoons. Agent4 uses
the Offer-10-5 negotiator and starts off with a dense initial
calendar (about 80% full). Figure 5 shows that the learn-
ing Agent quickly determines that the Offer-3-5 strategy is
not very effective when dealing with a very busy agent that
has similar preferences. After approximately 15 meetings
have been scheduled the learning agent converges on the
Availability-Declarer strategy.

We ran the same experiment described above but with a

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
tr

at
eg

y
w

ei
gh

ts

Number of meetings negotiated with Agent 3

Playbook weights over time for use with Agent 3

Availability Declarer
Offer-3-Negotiator

Offer-10-Negotiator

Figure 4: Weight adaptation for Agent3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
tr

at
eg

y
w

ei
gh

ts

Number of meetings negotiated with Agent 4

Playbook weights over time for use with Agent 4

Availability Declarer
Offer-3-Negotiator

Offer-10-Negotiator

Figure 5: Weight adaptation for Agent4

different utility function for the learning agent and different
initial calendars. The utility function we used had an α value
of 4 and a β value of 1. Making this change caused the
weights to converge on the Availability-Declarer strategy for
each of the agents since the negative effect of negotiation
length on utility was greatly increased.

We have also run preliminary experiments to evaluate how
well the learning agent actually optimizes the user’s pay-off.
We found that using the learning agent resulted in signifi-
cantly higher utility (approximately 15%) than randomizing
over the strategies in the playbook. In fact in all the exper-
iments we ran, the learning agent performed better than it
would have had it used the best (in hindsight) fixed strategy.

Conclusions and Future Work
We introduced the idea of using a playbook approach for
learning to select the best strategies for negotiating with dif-
ferent agents. The space of all possible negotiation strategies
is huge, and as such it is not possible for an agent to learn
how to negotiate in the complete space. The plays-based
approach cuts the strategy space down to a set of strategies
that are effective in different situations allowing an agent

to learn which of these strategies work best with different
fixed-strategy agents. This approach provides some theo-
retical bounds on the regret the learning agent can experi-
ence. We have demonstrated experimentally that this ap-
proach holds a lot of promise for learning how to select ne-
gotiation strategies.

We are currently working on a thorough experimental
evaluation of plays for multi-agent meeting scheduling. This
evaluation will consider a wider variety of plays and fixed-
strategies. In the future we also plan to explore the problem
of learning how to negotiate in the presence of agents that
are also learning.

Acknowledgments
Thanks to the anonymous reviewers and Michael Bowling
for helpful comments and suggestions. This research is
sponsored by the Department of the Interior (DOI) - Na-
tional Business Center (NBC) and the Defense Advanced
Research Projects Agency (DARPA) under contract no.
NBCHC030029. The views and conclusions contained in
this document are those of the author and should not be inter-
preted as representing the official policies, either expressed
or implied, of the DOI, NBC, DARPA or the U.S. govern-
ment.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
1995. Gambling in a rigged casino: the adversarial multi-
armed bandit problem. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, 322–
331. IEEE Computer Society Press, Los Alamitos, CA.

Bowling, M.; Browning, B.; and Veloso, M. 2004. Plays as
effective multiagent plans enabling opponent-adaptive play
selection. In Proceedings of International Conference on
Automated Planning and Scheduling (ICAPS’04). in press.

Crawford, E., and Veloso, M. 2004. Opportunities for
learning in multi-agent meeting scheduling. In In the Pro-
ceedings of the AAAI 2004 Symposium on Artificial Multi-
agent Learning, Washington, DC.

Ephrati, E.; Zlotkin, G.; and Rosenschein, J. S. 1994. A
non–manipulable meeting scheduling system. In Proc. In-
ternational Workshop on Distributed Artificial Intelligence.

Freund, Y.; Schapire, R. E.; Singer, Y.; and Warmuth,
M. K. 1997. Using and combining predictors that special-
ize. In STOC ’97: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, 334–343. New
York, NY, USA: ACM Press.

Garrido, L., and Sycara, K. 1995. Multi-agent meeting
scheduling: Preliminary experimental results. In Proceed-
ings of the First International Conference on Multi-Agent
Systems (ICMAS’95).

Gonzlez, A., and Santos, J. A negotiation protocol for
meeting scheduling based on a multiagent system.

Jennings, N. R., and Jackson, A. J. 1995. Agent based
meeting scheduling: A design and implementation. IEE
Electronics Letters 31(5):350–352.

Littlestone, N., and Warmuth, M. K. 1989. The weighted
majority algorithm. In IEEE Symposium on Foundations of
Computer Science, 256–261.
Pragnesh Jay Modi, M. V. 2005. Bumping strategies for
the private incremental multiagent agreement problem. In
AAAI Spring Symposium on Persistant Agents.
Sen, S., and Durfee, E. H. 1998. A formal study of dis-
tributed meeting scheduling. Group Decision and Negoti-
ation 7:265–289.
Sen, S.; Haynes, T.; and Arora, N. 1997. Satisfying
user preferences while negotiating meetings. Int. J. Hum.-
Comput. Stud. 47(3):407–427.
Shintani, T.; Ito, T.; and Sycara, K. 2000. Multiple nego-
tiations among agents for a distributed meeting scheduler.
In Proceedings of the Fourth International Conference on
MultiAgent Systems, 435 – 436.

