
Robustness of Adaptive Filtering Methods
 In a Cross-benchmark Evaluation

Yiming Yang, Shinjae Yoo, Jian Zhang, Bryan Kisiel

School of Computer Science, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

ABSTRACT
This paper reports a cross-benchmark evaluation of regularized
logistic regression (LR) and incremental Rocchio for adaptive
filtering. Using four corpora from the Topic Detection and
Tracking (TDT) forum and the Text Retrieval Conferences
(TREC) we evaluated these methods with non-stationary topics
at various granularity levels, and measured performance with
different utility settings. We found that LR performs strongly
and robustly in optimizing T11SU (a TREC utility function)
while Rocchio is better for optimizing Ctrk (the TDT tracking
cost), a high-recall oriented objective function. Using systematic
cross-corpus parameter optimization with both methods, we
obtained the best results ever reported on TDT5, TREC10 and
TREC11. Relevance feedback on a small portion (0.05~0.2%)
of the TDT5 test documents yielded significant performance
improvements, measuring up to a 54% reduction in Ctrk and a
20.9% increase in T11SU (with β=0.1), compared to the results
of the top-performing system in TDT2004 without relevance
feedback information.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering, Relevance feedback, Retrieval models, Selection
process; I.5.2 [Design Methodology]: Classifier design and
evaluation

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Adaptive filtering, topic tracking, cross-benchmark evaluations,
logistic regression, Rocchio

1. INTRODUCTION
Adaptive filtering (AF) has been a challenging research topic in
information retrieval. The task is for the system to make an
online topic membership decision (yes or no) for every

document, as soon as it arrives, with respect to each pre-defined
topic of interest. Starting from 1997 in the Topic Detection and
Tracking (TDT) area and 1998 in the Text Retrieval
Conferences (TREC), benchmark evaluations have been
conducted by NIST under the following
conditions[6][7][8][3][4]:

• A very small number (1 to 4) of positive training examples
was provided for each topic at the starting point.

• Relevance feedback was available but only for the system-
accepted documents (with a “yes” decision) in the TREC
evaluations for AF.

• Relevance feedback (RF) was not allowed in the TDT
evaluations for AF (or topic tracking in the TDT
terminology) until 2004.

• TDT2004 was the first time that TREC and TDT metrics
were jointly used in evaluating AF methods on the same
benchmark (the TDT5 corpus) where non-stationary topics
dominate.

The above conditions attempt to mimic realistic situations where
an AF system would be used. That is, the user would be willing
to provide a few positive examples for each topic of interest at
the start, and might or might not be able to provide additional
labeling on a small portion of incoming documents through
relevance feedback. Furthermore, topics of interest might
change over time, with new topics appearing and growing, and
old topics shrinking and diminishing. These conditions make
adaptive filtering a difficult task in statistical learning (online
classification), for the following reasons:

1) it is difficult to learn accurate models for prediction based
on extremely sparse training data;

2) it is not obvious how to correct the sampling bias (i.e.,
relevance feedback on system-accepted documents only)
during the adaptation process;

3) it is not well understood how to effectively tune parameters
in AF methods using cross-corpus validation where the
validation and evaluation topics do not overlap, and the
documents may be from different sources or different
epochs.

None of these problems is addressed in the literature of
statistical learning for batch classification where all the training
data are given at once. The first two problems have been
studied in the adaptive filtering literature, including topic profile
adaptation using incremental Rocchio, Gaussian-Exponential
density models, logistic regression in a Bayesian framework,
etc., and threshold optimization strategies using probabilistic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’05, August 15-19, 2005, Salvador, Brazil.
Copyright 2005 ACM 1-59593-034-5/05/0008...$5.00.

calibration or local fitting techniques [1][2][9][10][11][12][13].
Although these works provide valuable insights for
understanding the problems and possible solutions, it is difficult
to draw conclusions regarding the effectiveness and robustness
of current methods because the third problem has not been
thoroughly investigated. Addressing the third issue is the main
focus in this paper.

We argue that robustness is an important measure for evaluating
and comparing AF methods. By “robust” we mean consistent
and strong performance across benchmark corpora with a
systematic method for parameter tuning across multiple corpora.
Most AF methods have pre-specified parameters that may
influence the performance significantly and that must be
determined before the test process starts. Available training
examples, on the other hand, are often insufficient for tuning the
parameters. In TDT5, for example, there is only one labeled
training example per topic at the start; parameter optimization
on such training data is doomed to be ineffective.

This leaves only one option (assuming tuning on the test set is
not an alternative), that is, choosing an external corpus as the
validation set. Notice that the validation-set topics often do not
overlap with the test-set topics, thus the parameter optimization
is performed under the tough condition that the validation data
and the test data may be quite different from each other. Now
the important question is: which methods (if any) are robust
under the condition of using cross-corpus validation to tune
parameters? Current literature does not offer an answer because
no thorough investigation on the robustness of AF methods has
been reported.

In this paper we address the above question by conducting a
cross-benchmark evaluation with two effective approaches in
AF: incremental Rocchio and regularized logistic regression
(LR). Rocchio-style classifiers have been popular in AF, with
good performance in benchmark evaluations (TREC and TDT)
if appropriate parameters were used and if combined with an
effective threshold calibration strategy [2][4][7][8][9][11][13].
Logistic regression is a classical method in statistical learning,
and one of the best in batch-mode text categorization [15][14]. It
was recently evaluated in adaptive filtering and was found to
have relatively strong performance (Section 5.1). Furthermore, a
recent paper [13] reported that the joint use of Rocchio and LR
in a Bayesian framework outperformed the results of using each
method alone on the TREC11 corpus. Stimulated by those
findings, we decided to include Rocchio and LR in our cross-
benchmark evaluation for robustness testing. Specifically, we
focus on how much the performance of these methods depends
on parameter tuning, what the most influential parameters are in
these methods, how difficult (or how easy) to optimize these
influential parameters using cross-corpus validation, how strong
these methods perform on multiple benchmarks with the
systematic tuning of parameters on other corpora, and how
efficient these methods are in running AF on large benchmark
corpora.

The organization of the paper is as follows: Section 2 introduces
the four benchmark corpora (TREC10 and TREC11, TDT3 and
TDT5) used in this study. Section 3 analyzes the differences
among the TREC and TDT metrics (utilities and tracking cost)
and the potential implications of those differences. Section 4
outlines the Rocchio and LR approaches to AF, respectively.

Section 5 reports the experiments and results. Section 6
concludes the main findings in this study.

2. BENCHMARK CORPORA
We used four benchmark corpora in our study. Table 1 shows
the statistics about these data sets.
TREC10 was the evaluation benchmark for adaptive filtering in
TREC 2001, consisting of roughly 806,791 Reuters news stories
from August 1996 to August 1997 with 84 topic labels (subject
categories)[7]. The first two weeks (August 20th to 31st, 1996) of
documents is the training set, and the remaining 11 & ½ months
(from September 1st, 1996 to August 19th, 1997) is the test set.
TREC11 was the evaluation benchmark for adaptive filtering in
TREC 2002, consisting of the same set of documents as those in
TREC10 but with a slightly different splitting point for the
training and test sets. The TREC11 topics (50) are quite
different from those in TREC10; they are queries for retrieval
with relevance judgments by NIST assessors [8].
TDT3 was the evaluation benchmark in the TDT2001 dry run1.
The tracking part of the corpus consists of 71,388 news stories
from multiple sources in English and Mandarin (AP, NYT,
CNN, ABC, NBC, MSNBC, Xinhua, Zaobao, Voice of America
and PRI the World) in the period of October to December 1998.
Machine-translated versions of the non-English stories (Xinhua,
Zaobao and VOA Mandarin) are provided as well. The splitting
point for training-test sets is different for each topic in TDT.
TDT5 was the evaluation benchmark in TDT2004 [4]. The
tracking part of the corpus consists of 407,459 news stories in
the period of April to September, 2003 from 15 news agents or
broadcast sources in English, Arabic and Mandarin, with
machine-translated versions of the non-English stories. We only
used the English versions of those documents in our
experiments for this paper.
The TDT “topics” differ from TREC topics both conceptually
and statistically. Instead of generic, ever-lasting subject
categories (as those in TREC), TDT topics are defined at a finer
level of granularity, for events that happen at certain times and
locations, and that are “born” and “die”, typically associated
with a bursty distribution over chronologically ordered news
stories. The average size of TDT topics (events) is two orders
of magnitude smaller than that of the TREC10 topics. Figure 1
compares the document densities of a TREC topic (“Civil
Wars”) and two TDT topics (“Gunshot” and “APEC Summit
Meeting”, respectively) over a 3-month time period, where the
area under each curve is normalized to one.
The granularity differences among topics and the corresponding
non-stationary distributions make the cross-benchmark
evaluation interesting. For example, algorithms favoring large
and stable topics may not work well for short-lasting and non-
stationary topics, and vice versa. Cross-benchmark evaluations
allow us to test this hypothesis and possibly identify the
weaknesses in current approaches to adaptive filtering in
tracking the drifting trends of topics.

1 http://www.ldc.upenn.edu/Projects/TDT2001/topics.html

Table 1: Statistics of benchmark corpora for adaptive filtering evaluations

N(tr) is the number of the initial training documents; N(ts) is the number of the test documents;

n+ is the number of positive examples of a predefined topic; * is an average over all the topics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Week

P
(to

pi
c|

w
ee

k)

Gunshot (TDT5)

APEC Summit Meeting (TDT3)

Civil War(TREC10)

Figure 1: The temporal nature of topics

3. METRICS
To make our results comparable to the literature, we decided to
use both TREC-conventional and TDT-conventional metrics in
our evaluation.

3.1 TREC11 metrics
Let A, B, C and D be, respectively, the numbers of true
positives, false alarms, misses and true negatives for a specific
topic, and DCBAN +++= be the total number of test
documents. The TREC-conventional metrics are defined as:

 Precision)/(BAA += , Recall)/(CAA +=

)(2

)21(

CABA

AF
+++

+
=

β

β
β

 ()
η

ηηβ
ηβ −

−+−
=

1
),/()(max11 ,

CABASUT

where parameters β and η were set to 0.5 and -0.5 respectively
in TREC10 (2001) and TREC11 (2002). For evaluating the
performance of a system, the performance scores are computed

for individual topics first and then averaged over topics (macro-
averaging).

3.2 TDT metrics
The TDT-conventional metric for topic tracking is defined as:
 famisstrk PTPwPTPwTC))(1()()(21 −+=
where P(T) is the percentage of documents on topic T, missP is
the miss rate by the system on that topic, faP is the false alarm

rate, and 1w and 2w are the costs (pre-specified constants) for a
miss and a false alarm, respectively. The TDT benchmark
evaluations (since 1997) have used the settings
of 11 =w , 1.02 =w and 02.0)(=TP for all topics. For evaluating
the performance of a system, Ctrk is computed for each topic
first and then the resulting scores are averaged for a single
measure (the topic-weighted Ctrk).
To make the intuition behind this measure transparent, we
substitute the terms in the definition of Ctrk as follows:

N

CATP +
=)(,

N
DBTP +

=−)(1 ,

CA

CPmiss +
= ,

DB
BPfa +

= ,

)(1

)(

21

21

BwCw
N

DB
B

N
DBw

CA
C

N
CAwTCtrk

+⋅=

+
⋅

+
⋅+

+
⋅

+
⋅=

Clearly, trkC is the average cost per error on topic T, with 1w
and 2w controlling the penalty ratio for misses vs. false alarms.

In addition to trkC , TDT2004 also employed 1.011 =βSUT as a

utility metric. To distinguish this from the 5.011 =βSUT in
TREC11, we call former TDT5SU in the rest of this paper.

Corpus #Topics N(tr) N(ts) Avg
n+ (tr)

Avg
n+ (ts)

Max
n+ (ts)

 Min
n+ (ts)

#Topics per
doc (ts)

TREC10 84 20,307 783,484 2 9795.3 39,448 38 1.57

TREC11 50 80.664 726,419 3 378.0 597 198 1.12

TDT3 53 18,738* 37,770* 4 79.3 520 1 1.06

TDT5 111 199,419* 207,991* 1 71.3 710 1 1.01

3.3 The correlations and the differences
From an optimization point of view, TDT5SU and T11SU are
both utility functions while Ctrk is a cost function. Our objective
is to maximize the former or to minimize the latter on test
documents. The differences and correlations among these
objective functions can be analyzed through the shared counts
of A, B, C and D in their definitions. For example, both
TDT5SU and T11SU are positively correlated to the values of A
and D, and negatively correlated to the values of B and C; the
only difference between them is in their penalty ratios for
misses vs. false alarms, i.e., 10:1 in TDT5SU and 2:1 in T11SU.
The Ctrk function, on the other hand, is positively correlated to
the values of C and B, and negatively correlated to the values of
A and D; hence, it is negatively correlated to T11SU and
TDT5SU.
More importantly, there is a subtle and major difference
between Ctrk and the utility functions: T11SU and TDT5SU.
That is, Ctrk has a very different penalty ratio for misses vs.
false alarms: it favors recall-oriented systems to an extreme. At
first glance, one would think that the penalty ratio in Ctrk is
10:1 since 11 =w and 1.02 =w . However, this is not true if

02.0)(=TP is an inaccurate estimate of the on-topic documents
on average for the test corpus. Using TDT3 as an example, the
true percentage is:

002.0
37770

3.79
)(≈=+=

N

n
TP

where N is the average size of the test sets in TDT3, and n+ is
the average number of positive examples per topic in the test
sets. Using 02.0)(ˆ =TP as an (inaccurate) estimate of 0.002
enlarges the intended penalty ratio of 10:1 to 100:1, roughly
speaking. To wit:

)1.010(
1

1.010

)3.7937770(37770

3.79
1011.0101

1011.0101

))(1(2)(1

)02.01(202.01)(

BC
NN

B

N

C

B

N

C

DB

B

N

CA

N

C

faPTPwmissPTPw

faPwmissPwTtrkC

×+×=×+×≈

−
×−×+××=

+

+
×−×+××=

×−⋅+××=

−×+××=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

ρρ

where 10
002.0
02.0

)(
)(ˆ

===
TP
TPρ is the factor of enlargement in the

estimation of P(T) compared to the truth. Comparing the above
result to formula 2, we can see the actual penalty ratio for
misses vs. false alarms was 100:1 in the evaluations on TDT3
using Ctrk. Similarly, we can compute the enlargement factor
for TDT5 using the statistics in Table 1 as follows:

 3.58
991,207/3.71

02.0

)(

)(ˆ
===

TP

TP
ρ

which means the actual penalty ratio for misses vs. false alarms
in the evaluation on TDT5 using Ctrk was approximately 583:1.
The implications of the above analysis are rather significant:

• Ctrk defined in the same formula does not necessarily
mean the same objective function in evaluation; instead,
the optimization criterion depends on the test corpus.

• Systems optimized for Ctrk would not optimize TDT5SU
(and T11SU) because the former favors high-recall
oriented to an extreme while the latter does not.

• Parameters tuned on one corpus (e.g., TDT3) might not
work for an evaluation on another corpus (say, TDT5)
unless we account for the previously-unknown subtle
dependency of Ctrk on data.

• Results in Ctrk in the past years of TDT evaluations may
not be directly comparable to each other because the
evaluation collections changed most years and hence the
penalty ratio in Ctrk varied.

Although these problems with Ctrk were not originally
anticipated, it offered an opportunity to examine the ability of
systems in trading off precision for extreme recall. This was a
challenging part of the TDT2004 evaluation for AF.
Comparing the metrics in TDT and TREC from a utility or cost
optimization point of view is important for understanding the
evaluation results of adaptive filtering methods. This is the first
time this issue is explicitly analyzed, to our knowledge.

4. METHODS
4.1 Incremental Rocchio for AF
We employed a common version of Rocchio-style classifiers
which computes a prototype vector per topic (T) as follows:

|)(|

'

|)(|
)()()(')(

TD

d

TD

d
TqTp TDdTDd

−

∈

+

∈ ∑∑
−+ −+=

rr
rr

rr
γβα

The first term on the RHS is the weighted vector representation
of topic description whose elements are terms weights. The
second term is the weighted centroid of the set)(TD+ of
positive training examples, each of which is a vector of within-
document term weights. The third term is the weighted centroid
of the set)(TD− of negative training examples which are the
nearest neighbors of the positive centroid. The three terms are
given pre-specified weights of βα , and γ , controlling the
relative influence of these components in the prototype.

The prototype of a topic is updated each time the system makes
a “yes” decision on a new document for that topic. If relevance
feedback is available (as is the case in TREC adaptive filtering),
the new document is added to the pool of
either)(TD+ or)(TD− , and the prototype is recomputed
accordingly; if relevance feedback is not available (as is the case
in TDT event tracking), the system’s prediction (“yes”) is
treated as the truth, and the new document is added to)(TD+ for
updating the prototype. Both cases are part of our experiments
in this paper (and part of the TDT 2004 evaluations for AF). To
distinguish the two, we call the first case simply “Rocchio” and

the second case “PRF Rocchio” where PRF stands for pseudo-
relevance feedback.

The predictions on a new document are made by computing the
cosine similarity between each topic prototype and the
document vector, and then comparing the resulting scores
against a threshold:

⎩
⎨
⎧
−
+

=−
)(
)(

))),((cos(
no
yes

dTpsign new θ
rr

Threshold calibration in incremental Rocchio is a challenging
research topic. Multiple approaches have been developed. The
simplest is to use a universal threshold for all topics, tuned on a
validation set and fixed during the testing phase. More elaborate
methods include probabilistic threshold calibration which
converts the non-probabilistic similarity scores to probabilities
(i.e.,)|(dTP

r
) for utility optimization [9][13], and margin-based

local regression for risk reduction [11].

It is beyond the scope of this paper to compare all the different
ways to adapt Rocchio-style methods for AF. Instead, our focus
here is to investigate the robustness of Rocchio-style methods in
terms of how much their performance depends on elaborate
system tuning, and how difficult (or how easy) it is to get good
performance through cross-corpus parameter optimization.
Hence, we decided to use a relatively simple version of Rocchio
as the baseline, i.e., with a universal threshold tuned on a
validation corpus and fixed for all topics in the testing phase.
This simple version of Rocchio has been commonly used in the
past TDT benchmark evaluations for topic tracking, and had
strong performance in the TDT2004 evaluations for adaptive
filtering with and without relevance feedback (Section 5.1).
Results of more complex variants of Rocchio are also discussed
when relevant.

4.2 Logistic Regression for AF
Logistic regression (LR) estimates the posterior probability of a
topic given a document using a sigmoid function

)1/(1),|1(xwewxyP
rrrr ⋅−+==

where x
r

is the document vector whose elements are term
weights, wr is the vector of regression coefficients, and

}1,1{ −+∈y is the output variable corresponding to “yes” or
“no” with respect to a particular topic. Given a training set of
labeled documents { }),(,),,(11 nn yxyxD r

L
r

= , the
standard regression problem is defined as to find the maximum
likelihood estimates of the regression coefficients (“the model
parameters”):

{ } { }

{ }))exp(1(1logminarg

)|(logmaxarg)|(maxarg

ii xwyn
iw

wDP
w

wDP
wmlw

rr
r

r
r

r
r

r

⋅−+∑ ==

==

This is a convex optimization problem which can be solved
using a standard conjugate gradient algorithm in O(INF) time
for training per topic, where I is the average number of
iterations needed for convergence, and N and F are the number
of training documents and number of features respectively [14].

Once the regression coefficients are optimized on the training
data, the filtering prediction on each incoming document is
made as:

 ()
⎩
⎨
⎧
−
+

=−
)(
)(

),|(
no
yes

wxyPsign optnew θ
rr

Note that w
r

 is constantly updated whenever a new relevance
judgment is available in the testing phase of AF, while the
optimal threshold optθ is constant, depending only on the pre-
defined utility (or cost) function for evaluation. If T11SU is the
metric, for example, with the penalty ratio of 2:1 for misses and
false alarms (Section 3.1), the optimal threshold for LR
is 33.0)12/(1 =+ for all topics.

We modified the standard (above) version of LR to allow more
flexible optimization criteria as follows:

⎭
⎬
⎫

⎩
⎨
⎧ −++= ∑ =

⋅− 2
1

)1log()(minarg μλ
rrr rr

r
weysw

n

i
xwy

i
w

map
ii

where)(iys is taken to be α , β and γ for query, positive
and negative documents respectively, which are similar to those
in Rocchio, giving different weights to the three kinds of
training examples: topic descriptions (“queries”), on-topic
documents and off-topic documents. The second term in the
objective function is for regularization, equivalent to adding a
Gaussian prior to the regression coefficients with mean μ

r
 and

covariance variance matrix Ι⋅λ2/1 , where Ι is the identity
matrix. Tuning λ (≥0) is theoretically justified for reducing
model complexity (“the effective degree of freedom”) and
avoiding over-fitting on training data [5]. How to find an
effective μ

r
 is an open issue for research, depending on the

user’s belief about the parameter space and the optimal range.
The solution of the modified objective function is called the
Maximum A Posteriori (MAP) estimate, which reduces to the
maximum likelihood solution for standard LR if 0=λ .

5. EVALUATIONS
We report our empirical findings in four parts: the TDT2004
official evaluation results, the cross-corpus parameter
optimization results, and the results corresponding to the
amounts of relevance feedback.

5.1 TDT2004 benchmark results
The TDT2004 evaluations for adaptive filtering were conducted
by NIST in November 2004. Multiple research teams
participated and multiple runs from each team were allowed.
Ctrk and TDT5SU were used as the metrics. Figure 2 and Figure
3 show the results; the best run from each team was selected
with respect to Ctrk or TDT5SU, respectively. Our Rocchio
(with adaptive profiles but fixed universal threshold for all
topics) had the best result in Ctrk, and our logistic regression
had the best result in TDT5SU. All the parameters of our runs
were tuned on the TDT3 corpus. Results for other sites are also
listed anonymously for comparison.

Ctrk
Ours 0.0324
Site2 0.0467
Site3 0.1366
Site4 0.2438

Metric = Ctrk (the lower the better)

0.0324 0.0467

0.1366

0.2438

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Ours Site2 Site3 Site4

Figure 2: TDT2004 results in Ctrk of systems using true
relevance feedback. (“Ours” is the Rocchio method.) We
also put the 1st and 3rd quartiles as sticks for each site.2

T11SU
Ours 0.7328
Site3 0.7281
Site2 0.6672
Site4 0.382

Metric = TDT5SU (the higher the better)

0.7328 0.7281
0.6672

0.382

0

0.2

0.4

0.6

0.8

1

Ours Site3 Site2 Site4

Figure 3:TDT2004 results in TDT5SU of systems using true
relevance feedback. (“Ours” is LR
with 0=μ

r
and 005.0=λ).

CTrk
Ours 0.0707
Site2 0.1545
Site5 0.5669
Site4 0.6507
Site6 0.8973

Primary Topic Traking Results in TDT2004

0.0707

0.8973

0.6507

0.1545

0.5669

0
0.2
0.4
0.6
0.8

1
1.2

Ours Site2 Site5 Site4 Site6

C
tr

k

Figure 4:TDT2004 results in Ctrk of systems without using
true relevance feedback. (“Ours” is PRF Rocchio.)
Adaptive filtering without using true relevance feedback was
also a part of the evaluations. In this case, systems had only one
labeled training example per topic during the entire training and
testing processes, although unlabeled test documents could be
used as soon as predictions on them were made. Such a setting
has been conventional for the Topic Tracking task in TDT until
2004. Figure 4 shows the summarized official submissions from
each team. Our PRF Rocchio (with a fixed threshold for all the
topics) had the best performance.

2 We use quartiles rather than standard deviations since the

former is more resistant to outliers.

5.2 Cross-corpus parameter optimization
How much the strong performance of our systems depends on
parameter tuning is an important question.
Both Rocchio and LR have parameters that must be pre-
specified before the AF process. The shared parameters include
the sample weightsα , β and γ , the sample size of the negative
training documents (i.e.,)(TD−), the term-weighting scheme,
and the maximal number of non-zero elements in each
document vector. The method-specific parameters include the
decision threshold in Rocchio, and μ

r
, λ and MI (the maximum

number of iterations in training) in LR. Given that we only have
one labeled example per topic in the TDT5 training sets, it is
impossible to effectively optimize these parameters on the
training data, and we had to choose an external corpus for
validation. Among the choices of TREC10, TREC11 and TDT3,
we chose TDT3 (c.f. Section 2) because it is most similar to
TDT5 in terms of the nature of the topics (Section 2). We
optimized the parameters of our systems on TDT3, and fixed
those parameters in the runs on TDT5 for our submissions to
TDT2004. We also tested our methods on TREC10 and
TREC11 for further analysis. Since exhaustive testing of all
possible parameter settings is computationally intractable, we
followed a step-wise forward chaining procedure instead: we
pre-specified an order of the parameters in a method (Rocchio
or LR), and then tuned one parameter at the time while fixing
the settings of the remaining parameters. We repeated this
procedure for several passes as time allowed.

0.05

0.26

0.67
0.69

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

0.02 0.03 0.04 0.06 0.08 0.1 0.15 0.2 0.25 0.3

Threshold

TD
T5

SU

TDT3 TDT5 TREC10 TREC11

Figure 5: Performance curves of adaptive Rocchio

Figure 5 compares the performance curves in TDT5SU for
Rocchio on TDT3, TDT5, TREC10 and TREC11 when the
decision threshold varied. These curves peak at different
locations: the TDT3-optimal is closest to the TDT5-optimal
while the TREC10-optimal and TREC1-optimal are quite far
away from the TDT5-optimal. If we were using TREC10 or
TREC11 instead of TDT3 as the validation corpus for TDT5, or
if the TDT3 corpus were not available, we would have difficulty
in obtaining strong performance for Rocchio in TDT2004. The
difficulty comes from the ad hoc (non-probabilistic) scores
generated by the Rocchio method: the distribution of the scores
depends on the corpus, making cross-corpus threshold
optimization a tricky problem.
Logistic regression has less difficulty with respect to threshold
tuning because it produces probabilistic scores of)|1Pr(xy =

upon which the optimal threshold can be directly computed if
probability estimation is accurate. Given the penalty ratio for
misses vs. false alarms as 2:1 in T11SU, 10:1 in TDT5SU and
583:1 in Ctrk (Section 3.3), the corresponding optimal
thresholds (t) are 0.33, 0.091 and 0.0017 respectively.
Although the theoretical threshold could be inaccurate, it still
suggests the range of near-optimal settings. With these threshold
settings in our experiments for LR, we focused on the cross-
corpus validation of the Bayesian prior parameters, that is, μ

r

and λ. Table 2 summarizes the results 3 . We measured the
performance of the runs on TREC10 and TREC11 using T11SU,
and the performance of the runs on TDT3 and TDT5 using
TDT5SU. For comparison we also include the best results of
Rocchio-based methods on these corpora, which are our own
results of Rocchio on TDT3 and TDT5, and the best results
reported by NIST for TREC10 and TREC11. From this set of
results, we see that LR significantly outperformed Rocchio on
all the corpora, even in the runs of standard LR without any
tuning, i.e. λ=0. This empirical finding is consistent with a
previous report [13] for LR on TREC11 although our results of
LR (0.585~0.608 in T11SU) are stronger than the results (0.49
for standard LR and 0.54 for LR using Rocchio prototype as the
prior) in that report. More importantly, our cross-benchmark
evaluation gives strong evidence for the robustness of LR. The
robustness, we believe, comes from the probabilistic nature of
the system-generated scores. That is, compared to the ad hoc
scores in Rocchio, the normalized posterior probabilities make
the threshold optimization in LR a much easier problem.
Moreover, logistic regression is known to converge towards the
Bayes classifier asymptotically while Rocchio classifiers’
parameters do not.
Another interesting observation in these results is that the
performance of LR did not improve when using a Rocchio
prototype as the mean in the prior; instead, the performance
decreased in some cases. This observation does not support the
previous report by [13], but we are not surprised because we are
not convinced that Rocchio prototypes are more accurate than
LR models for topics in the early stage of the AF process, and
we believe that using a Rocchio prototype as the mean in the
Gaussian prior would introduce undesirable bias to LR. We also
believe that variance reduction (in the testing phase) should be
controlled by the choice of λ (but not μ

r
), for which we

conducted the experiments as shown in Figure 6.
Table 2: Results of LR with different Bayesian priors

Corpus TDT3 TDT5 TREC10 TREC11

LR(μ=0,λ=0) 0.7562 0.7737 0.585 0.5715

LR(μ=0,λ=0.01) 0.8384 0.7812 0.6077 0.5747

LR(μ=roc*,λ=0.01) 0.8138 0.7811 0.5803 0.5698

Best Rocchio 0.6628 0.6917 0.4964 0.475

3 The LR results (0.77~0.78) on TDT5 in this table are better

than our TDT2004 official result (0.73) because parameter
optimization has been improved afterwards.

4 The TREC10-best result (0.496 by Oracle) is only available in
T10U which is not directly comparable to the scores in
T11SU, just indicative.

*: μ
r

 was set to the Rocchio prototype

0

0.2

0.4

0.6

0.8

0.000 0.001 0.005 0.050 0.500
Lambda

Pe
rf

or
m

an
ce

Ctrk on TDT3 TDT5SU on TDT3
TDT5SU on TDT5 T11SU on TREC11

Figure 6: LR with varying lambda.

The performance of LR is summarized with respect to λ tuning
on the corpora of TREC10, TREC11 and TDT3. The
performance on each corpus was measured using the
corresponding metrics, that is, T11SU for the runs on TREC10
and TREC11, and TDT5SU and Ctrk for the runs on TDT3,. In
the case of maximizing the utilities, the “safe” interval for λ is
between 0 and 0.01, meaning that the performance of
regularized LR is stable, the same as or improved slightly over
the performance of standard LR. In the case of minimizing Ctrk,
the safe range for λ is between 0 and 0.1, and setting λ between
0.005 and 0.05 yielded relatively large improvements over the
performance of standard LR because training a model for
extremely high recall is statistically more tricky, and hence
more regularization is needed. In either case, tuning λ is
relatively safe, and easy to do successfully by cross-corpus
tuning.
Another influential choice in our experiment settings is term
weighting: we examined the choices of binary, TF and TF-IDF
(the “ltc” version) schemes. We found TF-IDF most effective
for both Rocchio and LR, and used this setting in all our
experiments.

5.3 Percentages of labeled data
How much relevance feedback (RF) would be needed during the
AF process is a meaningful question in real-world applications.
To answer it, we evaluated Rocchio and LR on TDT with the
following settings:

• Basic Rocchio, no adaptation at all

• PRF Rocchio, updating topic profiles without using true
relevance feedback;

• Adaptive Rocchio, updating topic profiles using relevance
feedback on system-accepted documents plus 10
documents randomly sampled from the pool of system-
rejected documents;

• LR with 0
rr

=μ , 01.0=λ and threshold = 0.004;

• All the parameters in Rocchio tuned on TDT3.

Table 3 summarizes the results in Ctrk: Adaptive Rocchio with
relevance feedback on 0.6% of the test documents reduced the

tracking cost by 54% over the result of the PRF Rocchio, the
best system in the TDT2004 evaluation for topic tracking
without relevance feedback information. Incremental LR, on the
other hand, was weaker but still impressive. Recall that Ctrk is
an extremely high-recall oriented metric, causing frequent
updating of profiles and hence an efficiency problem in LR. For
this reason we set a higher threshold (0.004) instead of the
theoretically optimal threshold (0.0017) in LR to avoid an
untolerable computation cost. The computation time in
machine-hours was 0.33 for the run of adaptive Rocchio and 14
for the run of LR on TDT5 when optimizing Ctrk. Table 4
summarizes the results in TDT5SU; adaptive LR was the winner
in this case, with relevance feedback on 0.05% of the test
documents improving the utility by 20.9% over the results of
PRF Rocchio.

Table 3: AF methods on TDT5 (Performance in Ctrk)
 Base Roc PRF Roc Adp Roc LR

% of RF 0% 0% 0.6% 0.2%

Ctrk 0.076 0.0707 0.0324 0.0382

±% +7% (baseline) -54% -46%

Table 4: AF methods on TDT5 (Performance in TDT5SU)
 Base Roc PRF Roc Adp Roc LR(λ=.01)

% of RF 0% 0% 0.04% 0.05%

TDT5SU 0.57 0.6452 0.69 0.78

±% -11.7% (baseline) +6.9% +20.9%

Evidently, both Rocchio and LR are highly effective in adaptive
filtering, in terms of using of a small amount of labeled data to
significantly improve the model accuracy in statistical learning,
which is the main goal of AF.

5.4 Summary of Adaptation Process
After we decided the parameter settings using validation, we
perform the adaptive filtering in the following steps for each
topic: 1) Train the LR/Rocchio model using the provided
positive training examples and 30 randomly sampled negative
examples; 2) For each document in the test corpus: we first
make a prediction about relevance, and then get relevance
feedback for those (predicted) positive documents. 3) Model and
IDF statistics will be incrementally updated if we obtain its true
relevance feedback.

6. CONCLUDING REMARKS
We presented a cross-benchmark evaluation of incremental
Rocchio and incremental LR in adaptive filtering, focusing on
their robustness in terms of performance consistency with
respect to cross-corpus parameter optimization. Our main
conclusions from this study are the following:

• Parameter optimization in AF is an open challenge but has
not been thoroughly studied in the past.

• Robustness in cross-corpus parameter tuning is important
for evaluation and method comparison.

• We found LR more robust than Rocchio; it had the best
results (in T11SU) ever reported on TDT5, TREC10 and
TREC11 without extensive tuning.

• We found Rocchio performs strongly when a good
validation corpus is available, and a preferred choice when
optimizing Ctrk is the objective, favoring recall over
precision to an extreme.

For future research we want to study explicit modeling of the
temporal trends in topic distributions and content drifting.

Acknowledgments
This material is based upon work supported in parts by the
National Science Foundation (NSF) under grant IIS-0434035,
by the DoD under award 114008-N66001992891808 and by the
Defense Advanced Research Project Agency (DARPA) under
Contract No. NBCHD030010. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the sponsors.

7. REFERENCES
[1] J. Allan. Incremental relevance feedback for information

filtering. In SIGIR-96, 1996.
[2] J. Callan. Learning while filtering documents. In SIGIR-98,

224-231, 1998.
[3] J. Fiscus and G. Duddington. Topic detection and tracking

overview. In Topic detection and tracking: event-based
information organization, 17—31, 2002.

[4] J. Fiscus and B. Wheatley. Overview of the TDT 2004
Evaluation and Results. In TDT-04, 2004.

[5] T. Hastie, R. Tibshirani and J. Friedman. Elements of
Statistical Learning. Springer, 2001.

[6] S. Robertson and D. Hull. The TREC-9 filtering track final
report. In TREC-9, 2000.

[7] S. Robertson and I. Soboroff. The TREC-10 filtering track
final report. In TREC-10, 2001.

[8] S. Robertson and I. Soboroff. The TREC 2002 filtering
track report. In TREC-11, 2002.

[9] S. Robertson and S. Walker. Microsoft Cambridge at
TREC-9. In TREC-9, 2000.

[10] R. Schapire, Y. Singer and A. Singhal. Boosting and
Rocchio applied to text filtering. In SIGIR-98, 215-223,
1998.

[11] Y. Yang and B. Kisiel. Margin-based local regression for
adaptive filtering. In CIKM-03, 2003.

[12] Y. Zhang and J. Callan. Maximum likelihood estimation
for filtering thresholds. In SIGIR-01, 2001.

[13] Y. Zhang. Using Bayesian priors to combine classifiers for
adaptive filtering. In SIGIR-04, 2004.

[14] J. Zhang and Y. Yang. Robustness of regularized linear
classification methods in text categorization. In SIGIR-03:
190-197, 2003.

[15] T. Zhang, F. J. Oles. Text Categorization Based on
Regularized Linear Classification Methods. Inf. Retr. 4(1):
5-31 (2001).

