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ABSTRACT 
This paper reports a cross-benchmark evaluation of regularized 
logistic regression (LR) and incremental Rocchio for adaptive 
filtering. Using four corpora from the Topic Detection and 
Tracking (TDT) forum and the Text Retrieval Conferences 
(TREC) we evaluated these methods with non-stationary topics 
at various granularity levels, and measured performance with 
different utility settings.  We found that LR performs strongly 
and robustly in optimizing T11SU (a TREC utility function) 
while Rocchio is better for optimizing Ctrk (the TDT tracking 
cost), a high-recall oriented objective function. Using systematic 
cross-corpus parameter optimization with both methods, we 
obtained the best results ever reported on TDT5, TREC10 and 
TREC11. Relevance feedback on a small portion (0.05~0.2%) 
of the TDT5 test documents yielded significant performance 
improvements, measuring up to a 54% reduction in Ctrk and a 
20.9% increase in T11SU (with β=0.1), compared to the results 
of the top-performing system in TDT2004 without relevance 
feedback information. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Information 
filtering, Relevance feedback, Retrieval models, Selection 
process; I.5.2 [Design Methodology]: Classifier design and 
evaluation 

General Terms 
Algorithms, Measurement, Performance, Experimentation 

Keywords 
Adaptive filtering, topic tracking, cross-benchmark evaluations, 
logistic regression, Rocchio 

 

1. INTRODUCTION 
Adaptive filtering (AF) has been a challenging research topic in 
information retrieval.  The task is for the system to make an 
online topic membership decision (yes or no) for every 

document, as soon as it arrives, with respect to each pre-defined 
topic of interest. Starting from 1997 in the Topic Detection and 
Tracking (TDT) area and 1998 in the Text Retrieval 
Conferences (TREC), benchmark evaluations have been 
conducted by NIST under the following 
conditions[6][7][8][3][4]: 

• A very small number (1 to 4) of positive training examples 
was provided for each topic at the starting point.  

• Relevance feedback was available but only for the system-
accepted documents (with a “yes” decision) in the TREC 
evaluations for AF. 

• Relevance feedback (RF) was not allowed in the TDT 
evaluations for AF (or topic tracking in the TDT 
terminology) until 2004.  

• TDT2004 was the first time that TREC and TDT metrics 
were jointly used in evaluating AF methods on the same 
benchmark (the TDT5 corpus) where non-stationary topics 
dominate. 

The above conditions attempt to mimic realistic situations where 
an AF system would be used. That is, the user would be willing 
to provide a few positive examples for each topic of interest at 
the start, and might or might not be able to provide additional 
labeling on a small portion of incoming documents through 
relevance feedback. Furthermore, topics of interest might 
change over time, with new topics appearing and growing, and 
old topics shrinking and diminishing. These conditions make 
adaptive filtering a difficult task in statistical learning (online 
classification), for the following reasons: 

1) it is difficult to learn accurate models for prediction based 
on extremely sparse training data; 

2) it is not obvious how to correct the sampling bias (i.e., 
relevance feedback on system-accepted documents only) 
during the adaptation process; 

3) it is not well understood how to effectively tune parameters 
in AF methods using cross-corpus validation where the 
validation and evaluation topics  do not overlap, and the 
documents may be from different sources or different 
epochs. 

None of these problems is addressed in the literature of 
statistical learning for batch classification where all the training 
data are given at once.  The first two problems have been 
studied in the adaptive filtering literature, including topic profile 
adaptation using incremental Rocchio, Gaussian-Exponential 
density models, logistic regression in a Bayesian framework, 
etc., and threshold optimization strategies using probabilistic 
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calibration or local fitting techniques [1][2][9][10][11][12][13]. 
Although these works provide valuable insights for 
understanding the problems and possible solutions, it is difficult 
to draw conclusions regarding the effectiveness and robustness 
of current methods because the third problem has not been 
thoroughly investigated.  Addressing the third issue is the main 
focus in this paper.  

We argue that robustness is an important measure for evaluating 
and comparing AF methods. By “robust” we mean consistent 
and strong performance across benchmark corpora with a 
systematic method for parameter tuning across multiple corpora.  
Most AF methods have pre-specified parameters that may 
influence the performance significantly and that must be 
determined before the test process starts. Available training 
examples, on the other hand, are often insufficient for tuning the 
parameters.  In TDT5, for example, there is only one labeled 
training example per topic at the start; parameter optimization 
on such training data is doomed to be ineffective.   

This leaves only one option (assuming tuning on the test set is 
not an alternative), that is, choosing an external corpus as the 
validation set.  Notice that the validation-set topics often do not 
overlap with the test-set topics, thus the parameter optimization 
is performed under the tough condition that the validation data 
and the test data may be quite different from each other. Now 
the important question is: which methods (if any) are robust 
under the condition of using cross-corpus validation to tune 
parameters? Current literature does not offer an answer because 
no thorough investigation on the robustness of AF methods has 
been reported.   

In this paper we address the above question by conducting a 
cross-benchmark evaluation with two effective approaches in 
AF: incremental Rocchio and regularized logistic regression 
(LR). Rocchio-style classifiers have been popular in AF, with 
good performance in benchmark evaluations (TREC and TDT) 
if appropriate parameters were used and if combined with an 
effective threshold calibration strategy [2][4][7][8][9][11][13].  
Logistic regression is a classical method in statistical learning, 
and one of the best in batch-mode text categorization [15][14]. It 
was recently evaluated in adaptive filtering and was found to 
have relatively strong performance (Section 5.1). Furthermore, a 
recent paper [13] reported that the joint use of Rocchio and LR 
in a Bayesian framework outperformed the results of using each 
method alone on the TREC11 corpus.  Stimulated by those 
findings, we decided to include Rocchio and LR in our cross-
benchmark evaluation for robustness testing. Specifically, we 
focus on how much the performance of these methods depends 
on parameter tuning, what the most influential parameters are in 
these methods, how difficult (or how easy) to optimize these 
influential parameters using cross-corpus validation, how strong 
these methods perform on multiple benchmarks with the 
systematic tuning of parameters on other corpora, and how 
efficient these methods are in running AF on large benchmark 
corpora. 

The organization of the paper is as follows: Section 2 introduces 
the four benchmark corpora (TREC10 and TREC11, TDT3 and 
TDT5) used in this study. Section 3 analyzes the differences 
among the TREC and TDT metrics (utilities and tracking cost) 
and the potential implications of those differences.  Section 4 
outlines the Rocchio and LR approaches to AF, respectively.  

Section 5 reports the experiments and results. Section 6 
concludes the main findings in this study. 

2. BENCHMARK CORPORA 
We used four benchmark corpora in our study. Table 1 shows 
the statistics about these data sets.  
TREC10 was the evaluation benchmark for adaptive filtering in 
TREC 2001, consisting of roughly 806,791 Reuters news stories 
from August 1996 to August 1997 with 84 topic labels (subject 
categories)[7]. The first two weeks (August 20th to 31st, 1996) of 
documents is the training set, and the remaining 11 & ½ months 
(from September 1st, 1996 to August 19th, 1997) is the test set. 
TREC11 was the evaluation benchmark for adaptive filtering in 
TREC 2002, consisting of the same set of documents as those in 
TREC10 but with a slightly different splitting point for the 
training and test sets. The TREC11 topics (50) are quite 
different from those in TREC10; they are queries for retrieval 
with relevance judgments by NIST assessors [8].  
TDT3 was the evaluation benchmark in the TDT2001 dry run1. 
The tracking part of the corpus consists of 71,388 news stories 
from multiple sources in English and Mandarin (AP, NYT, 
CNN, ABC, NBC, MSNBC, Xinhua, Zaobao, Voice of America 
and PRI the World) in the period of October to December 1998. 
Machine-translated versions of the non-English stories (Xinhua, 
Zaobao and VOA Mandarin) are provided as well. The splitting 
point for training-test sets is different for each topic in TDT. 
TDT5 was the evaluation benchmark in TDT2004 [4]. The 
tracking part of the corpus consists of 407,459 news stories in 
the period of April to September, 2003 from 15 news agents or 
broadcast sources in English, Arabic and Mandarin, with 
machine-translated versions of the non-English stories. We only 
used the English versions of those documents in our 
experiments for this paper.  
The TDT “topics” differ from TREC topics both conceptually 
and statistically. Instead of generic, ever-lasting subject 
categories (as those in TREC), TDT topics are defined at a finer 
level of granularity, for events that happen at certain times and 
locations, and that are “born” and “die”, typically associated 
with a bursty distribution over chronologically ordered news 
stories.  The average size of TDT topics (events) is two orders 
of magnitude smaller than that of the TREC10 topics. Figure 1 
compares the document densities of a TREC topic (“Civil 
Wars”) and two TDT topics (“Gunshot” and “APEC Summit 
Meeting”, respectively) over a 3-month time period, where the 
area under each curve is normalized to one. 
The granularity differences among topics and the corresponding 
non-stationary distributions make the cross-benchmark 
evaluation interesting.  For example, algorithms favoring large 
and stable topics may not work well for short-lasting and non-
stationary topics, and vice versa.  Cross-benchmark evaluations 
allow us to test this hypothesis and possibly identify the 
weaknesses in current approaches to adaptive filtering in 
tracking the drifting trends of topics. 

                                                                 
1 http://www.ldc.upenn.edu/Projects/TDT2001/topics.html 



 

Table 1: Statistics of benchmark corpora for adaptive filtering evaluations 
 

 

 

 

 

 

N(tr) is the number of the initial training documents;  N(ts) is the number of the test documents; 

n+ is the number of positive examples of a predefined topic;  * is an average  over all  the topics. 
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Figure 1: The temporal nature of topics 

 

3. METRICS 
To make our results comparable to the literature, we decided to 
use both TREC-conventional and TDT-conventional metrics in 
our evaluation.   

3.1 TREC11 metrics 
Let A, B, C and D be, respectively, the numbers of true 
positives, false alarms, misses and true negatives for a specific 
topic, and DCBAN +++= be the total number of test 
documents. The TREC-conventional metrics are defined as: 
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where parameters β  and η  were set to 0.5 and -0.5 respectively 
in TREC10 (2001) and TREC11 (2002). For evaluating the 
performance of a system, the performance scores are computed 

for individual topics first and then averaged over topics (macro-
averaging). 

3.2 TDT metrics 
The TDT-conventional metric for topic tracking is defined as: 
 famisstrk PTPwPTPwTC ))(1()()( 21 −+=       
where P(T) is the percentage of documents on topic T,  missP is 
the miss rate by the system on that topic,  faP is the false alarm 

rate, and 1w  and 2w are the costs (pre-specified constants) for a 
miss and a false alarm, respectively. The TDT benchmark 
evaluations (since 1997) have used the settings 
of 11 =w , 1.02 =w and 02.0)( =TP for all topics. For evaluating 
the performance of a system, Ctrk is computed for each topic 
first and then the resulting scores are averaged for a single 
measure (the topic-weighted Ctrk). 
To make the intuition behind this measure transparent, we 
substitute the terms in the definition of Ctrk as follows: 
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Clearly, trkC is the average cost per error on topic T, with 1w  
and 2w controlling the penalty ratio for misses vs. false alarms. 

In addition to trkC , TDT2004 also employed 1.011 =βSUT as a 

utility metric. To distinguish this from the 5.011 =βSUT  in 
TREC11, we call former TDT5SU in the rest of this paper. 

Corpus #Topics N(tr) N(ts)   Avg 
n+ (tr) 

Avg  
n+ (ts) 

Max 
n+ (ts) 

 Min 
n+ (ts) 

#Topics per 
doc (ts) 

TREC10 84 20,307 783,484 2 9795.3 39,448 38 1.57 

TREC11 50 80.664  726,419 3 378.0 597 198 1.12 

TDT3 53 18,738* 37,770* 4 79.3 520 1 1.06 

TDT5 111 199,419* 207,991* 1 71.3 710 1 1.01 



3.3 The correlations and the differences 
From an optimization point of view, TDT5SU and T11SU are 
both utility functions while Ctrk is a cost function. Our objective 
is to maximize the former or to minimize the latter on test 
documents. The differences and correlations among these 
objective functions can be analyzed through the shared counts 
of A, B, C and D in their definitions. For example, both 
TDT5SU and T11SU are positively correlated to the values of A 
and D, and negatively correlated to the values of B and C; the 
only difference between them is in their penalty ratios for 
misses vs. false alarms, i.e., 10:1 in TDT5SU and 2:1 in T11SU.  
The Ctrk function, on the other hand, is positively correlated to 
the values of C and B, and negatively correlated to the values of 
A and D; hence, it is negatively correlated to T11SU and 
TDT5SU.  
More importantly, there is a subtle and major difference 
between Ctrk and the utility functions: T11SU and TDT5SU. 
That is, Ctrk has a very different penalty ratio for misses vs. 
false alarms: it favors recall-oriented systems to an extreme. At 
first glance, one would think that the penalty ratio in Ctrk is 
10:1 since 11 =w  and 1.02 =w . However, this is not true if 

02.0)( =TP is an inaccurate estimate of the on-topic documents 
on average for the test corpus. Using TDT3 as an example, the 
true percentage is: 
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where N is the average size of the test sets in TDT3, and n+ is 
the average number of positive examples per topic in the test 
sets. Using 02.0)(ˆ =TP as an (inaccurate) estimate of 0.002 
enlarges the intended penalty ratio of 10:1 to 100:1, roughly 
speaking.  To wit: 
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estimation of P(T) compared to the truth. Comparing the above 
result to formula 2, we can see the actual penalty ratio for 
misses vs. false alarms was 100:1 in the evaluations on TDT3 
using Ctrk.  Similarly, we can compute the enlargement factor 
for TDT5 using the statistics in Table 1 as follows: 
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which means the actual penalty ratio for misses vs. false alarms 
in the evaluation on TDT5 using Ctrk was approximately 583:1. 
The implications of the above analysis are rather significant: 

• Ctrk defined in the same formula does not necessarily 
mean the same objective function in evaluation; instead, 
the optimization criterion depends on the test corpus. 

• Systems optimized for Ctrk would not optimize TDT5SU 
(and T11SU) because the former favors high-recall 
oriented to an extreme while the latter does not. 

• Parameters tuned on one corpus (e.g., TDT3) might not 
work for an evaluation on another corpus (say, TDT5) 
unless we account for the previously-unknown subtle 
dependency of Ctrk on data.  

• Results in Ctrk in the past years of TDT evaluations may 
not be directly comparable to each other because the 
evaluation collections changed most years and hence the 
penalty ratio in Ctrk varied. 

Although these problems with Ctrk were not originally 
anticipated, it offered an opportunity to examine the ability of 
systems in trading off precision for extreme recall. This was a 
challenging part of the TDT2004 evaluation for AF. 
Comparing the metrics in TDT and TREC from a utility or cost 
optimization point of view is important for understanding the 
evaluation results of adaptive filtering methods.  This is the first 
time this issue is explicitly analyzed, to our knowledge. 

4. METHODS 
4.1 Incremental Rocchio for AF 
We employed a common version of Rocchio-style classifiers 
which computes a prototype vector per topic (T) as follows: 
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The first term on the RHS is the weighted vector representation 
of topic description whose elements are terms weights. The 
second term is the weighted centroid of the set )(TD+  of 
positive training examples, each of which is a vector of within-
document term weights. The third term is the weighted centroid 
of the set )(TD−  of negative training examples which are the 
nearest neighbors of the positive centroid. The three terms are 
given pre-specified weights of βα , and γ , controlling the 
relative influence of these components in the prototype.  

The prototype of a topic is updated each time the system makes 
a “yes” decision on a new document for that topic. If relevance 
feedback is available (as is the case in TREC adaptive filtering), 
the new document is added to the pool of 
either )(TD+ or )(TD− , and the prototype is recomputed 
accordingly; if relevance feedback is not available (as is the case 
in TDT event tracking), the system’s prediction (“yes”) is 
treated as the truth, and the new document is added to )(TD+ for 
updating the prototype.  Both cases are part of our experiments 
in this paper (and part of the TDT 2004 evaluations for AF). To 
distinguish the two, we call the first case simply “Rocchio” and 



the second case “PRF Rocchio” where PRF stands for pseudo-
relevance feedback. 

The predictions on a new document are made by computing the 
cosine similarity between each topic prototype and the 
document vector, and then comparing the resulting scores 
against a threshold:  
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Threshold calibration in incremental Rocchio is a challenging 
research topic. Multiple approaches have been developed. The 
simplest is to use a universal threshold for all topics, tuned on a 
validation set and fixed during the testing phase. More elaborate 
methods include probabilistic threshold calibration which 
converts the non-probabilistic similarity scores to probabilities 
(i.e., )|( dTP

r
) for utility optimization [9][13], and margin-based 

local regression for risk reduction [11]. 

It is beyond the scope of this paper to compare all the different 
ways to adapt Rocchio-style methods for AF. Instead, our focus 
here is to investigate the robustness of Rocchio-style methods in 
terms of how much their performance depends on elaborate 
system tuning, and how difficult (or how easy) it is to get good 
performance through cross-corpus parameter optimization. 
Hence, we decided to use a relatively simple version of Rocchio 
as the baseline, i.e., with a universal threshold tuned on a 
validation corpus and fixed for all topics in the testing phase.  
This simple version of Rocchio has been commonly used in the 
past TDT benchmark evaluations for topic tracking, and had 
strong performance in the TDT2004 evaluations for adaptive 
filtering with and without relevance feedback (Section 5.1). 
Results of more complex variants of Rocchio are also discussed 
when relevant. 

4.2 Logistic Regression for AF 
Logistic regression (LR) estimates the posterior probability of a 
topic given a document using a sigmoid function 
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is the document vector whose elements are term 
weights, wr is the vector of regression coefficients, and 

}1,1{ −+∈y is the output variable corresponding to “yes” or 
“no” with respect to a particular topic. Given a training set of 
labeled documents { }),(,),,( 11 nn yxyxD r

L
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standard regression problem is defined as to find the maximum 
likelihood estimates of the regression coefficients (“the model 
parameters”):
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This is a convex optimization problem which can be solved 
using a standard conjugate gradient algorithm in O(INF) time 
for training per topic, where I is the average number of 
iterations needed for convergence, and N and F are the number 
of training documents and number of features respectively [14]. 

Once the regression coefficients are optimized on the training 
data, the filtering prediction on each incoming document is 
made as: 
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Note that w
r

 is constantly updated whenever a new relevance 
judgment is available in the testing phase of AF, while the 
optimal threshold optθ  is constant, depending only on the pre-
defined utility (or cost) function for evaluation. If T11SU is the 
metric, for example, with the penalty ratio of 2:1 for misses and 
false alarms (Section 3.1), the optimal threshold for LR 
is 33.0)12/(1 =+ for all topics. 

We modified the standard (above) version of LR to allow more 
flexible optimization criteria as follows: 
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where )( iys  is taken to be α , β  and γ  for query, positive 
and negative documents respectively, which are similar to those 
in Rocchio, giving different weights to the three kinds of 
training examples: topic descriptions (“queries”), on-topic 
documents and off-topic documents. The second term in the 
objective function is for regularization, equivalent to adding a 
Gaussian prior to the regression coefficients with mean μ

r
 and 

covariance variance matrix Ι⋅λ2/1 , where Ι  is the identity 
matrix. Tuning λ (≥0) is theoretically justified for reducing 
model complexity (“the effective degree of freedom”) and 
avoiding over-fitting on training data [5]. How to find an 
effective μ

r
 is an open issue for research, depending on the 

user’s belief about the parameter space and the optimal range. 
The solution of the modified objective function is called the 
Maximum A Posteriori (MAP) estimate, which reduces to the 
maximum likelihood solution for standard LR if 0=λ .  

5. EVALUATIONS  
We report our empirical findings in four parts: the TDT2004 
official evaluation results, the cross-corpus parameter 
optimization results, and the results corresponding to the 
amounts of relevance feedback.  

5.1 TDT2004 benchmark results 
The TDT2004 evaluations for adaptive filtering were conducted 
by NIST in November 2004. Multiple research teams 
participated and multiple runs from each team were allowed. 
Ctrk and TDT5SU were used as the metrics. Figure 2 and Figure 
3 show the results; the best run from each team was selected 
with respect to Ctrk or TDT5SU, respectively. Our Rocchio 
(with adaptive profiles but fixed universal threshold for all 
topics) had the best result in Ctrk, and our logistic regression 
had the best result in TDT5SU.  All the parameters of our runs 
were tuned on the TDT3 corpus. Results for other sites are also 
listed anonymously for comparison.  
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Figure 2: TDT2004 results in Ctrk of systems using true 
relevance feedback. (“Ours” is the Rocchio method.) We 
also put the 1st and 3rd quartiles as sticks for each site.2 
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Figure 3:TDT2004 results in TDT5SU of systems using true 
relevance feedback. (“Ours” is LR 
with 0=μ

r
and 005.0=λ ).  
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Figure 4:TDT2004 results in Ctrk of systems without using 
true relevance feedback. (“Ours” is PRF Rocchio.) 
Adaptive filtering without using true relevance feedback was 
also a part of the evaluations. In this case, systems had only one 
labeled training example per topic during the entire training and 
testing processes, although unlabeled test documents could be 
used as soon as predictions on them were made. Such a setting 
has been conventional for the Topic Tracking task in TDT until 
2004. Figure 4 shows the summarized official submissions from 
each team. Our PRF Rocchio (with a fixed threshold for all the 
topics) had the best performance.  
                                                                 
2  We use quartiles rather than standard deviations since the 

former is more resistant to outliers. 

5.2 Cross-corpus parameter optimization 
How much the strong performance of our systems depends on 
parameter tuning is an important question.  
Both Rocchio and LR have parameters that must be pre-
specified before the AF process.  The shared parameters include 
the sample weightsα , β and γ , the sample size of the negative 
training documents (i.e., )(TD− ), the term-weighting scheme, 
and the maximal number of non-zero elements in each 
document vector. The method-specific parameters include the 
decision threshold in Rocchio, and μ

r
, λ and MI (the maximum 

number of iterations in training) in LR. Given that we only have 
one labeled example per topic in the TDT5 training sets, it is 
impossible to effectively optimize these parameters on the 
training data, and we had to choose an external corpus for 
validation. Among the choices of TREC10, TREC11 and TDT3, 
we chose TDT3 (c.f. Section 2) because it is most similar to 
TDT5 in terms of the nature of the topics (Section 2). We 
optimized the parameters of our systems on TDT3, and fixed 
those parameters in the runs on TDT5 for our submissions to 
TDT2004.  We also tested our methods on TREC10 and 
TREC11 for further analysis. Since exhaustive testing of all 
possible parameter settings is computationally intractable, we 
followed a step-wise forward chaining procedure instead: we 
pre-specified an order of the parameters in a method (Rocchio 
or LR), and then tuned one parameter at the time while fixing 
the settings of the remaining parameters.  We repeated this 
procedure for several passes as time allowed.  
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Figure 5: Performance curves of adaptive Rocchio 

Figure 5 compares the performance curves in TDT5SU for 
Rocchio on TDT3, TDT5, TREC10 and TREC11 when the 
decision threshold varied. These curves peak at different 
locations: the TDT3-optimal is closest to the TDT5-optimal 
while the TREC10-optimal and TREC1-optimal are quite far 
away from the TDT5-optimal. If we were using TREC10 or 
TREC11 instead of TDT3 as the validation corpus for TDT5, or 
if the TDT3 corpus were not available, we would have difficulty 
in obtaining strong performance for Rocchio in TDT2004. The 
difficulty comes from the ad hoc (non-probabilistic) scores 
generated by the Rocchio method: the distribution of the scores 
depends on the corpus, making cross-corpus threshold 
optimization a tricky problem. 
Logistic regression has less difficulty with respect to threshold 
tuning because it produces probabilistic scores of )|1Pr( xy =  



upon which the optimal threshold can be directly computed if 
probability estimation is accurate. Given the penalty ratio for 
misses vs. false alarms as 2:1 in T11SU, 10:1 in TDT5SU and 
583:1 in Ctrk (Section 3.3), the corresponding optimal 
thresholds (t) are 0.33, 0.091 and 0.0017 respectively.  
Although the theoretical threshold could be inaccurate, it still 
suggests the range of near-optimal settings. With these threshold 
settings in our experiments for LR, we focused on the cross-
corpus validation of the Bayesian prior parameters, that is, μ

r
 

and λ. Table 2 summarizes the results 3 . We measured the 
performance of the runs on TREC10 and TREC11 using T11SU, 
and the performance of the runs on TDT3 and TDT5 using 
TDT5SU. For comparison we also include the best results of 
Rocchio-based methods on these corpora, which are our own 
results of Rocchio on TDT3 and TDT5, and the best results 
reported by NIST for TREC10 and TREC11. From this set of 
results, we see that LR significantly outperformed Rocchio on 
all the corpora, even in the runs of standard LR without any 
tuning, i.e. λ=0. This empirical finding is consistent with a 
previous report [13] for LR on TREC11 although our results of 
LR (0.585~0.608 in T11SU) are stronger than the results (0.49 
for standard LR and 0.54 for LR using Rocchio prototype as the 
prior) in that report. More importantly, our cross-benchmark 
evaluation gives strong evidence for the robustness of LR. The 
robustness, we believe, comes from the probabilistic nature of 
the system-generated scores. That is, compared to the ad hoc 
scores in Rocchio, the normalized posterior probabilities make 
the threshold optimization in LR a much easier problem.  
Moreover, logistic regression is known to converge towards the 
Bayes classifier asymptotically while Rocchio classifiers’ 
parameters do not. 
Another interesting observation in these results is that the 
performance of LR did not improve when using a Rocchio 
prototype as the mean in the prior; instead, the performance 
decreased in some cases. This observation does not support the 
previous report by [13], but we are not surprised because we are 
not convinced that Rocchio prototypes are more accurate than 
LR models for topics in the early stage of the AF process, and 
we believe that using a Rocchio prototype as the mean in the 
Gaussian prior would introduce undesirable bias to LR. We also 
believe that variance reduction (in the testing phase) should be 
controlled by the choice of λ (but not μ

r
), for which we 

conducted the experiments as shown in Figure 6. 
Table 2: Results of LR with different Bayesian priors 

Corpus TDT3 TDT5 TREC10 TREC11 

LR(μ=0,λ=0) 0.7562 0.7737 0.585 0.5715 

LR(μ=0,λ=0.01) 0.8384 0.7812 0.6077 0.5747 

LR(μ=roc*,λ=0.01) 0.8138 0.7811 0.5803 0.5698 

Best Rocchio 0.6628 0.6917 0.4964 0.475 

                                                                 
3 The LR results (0.77~0.78) on TDT5 in this table are better 

than our TDT2004 official result (0.73) because parameter 
optimization has been improved afterwards. 

4 The TREC10-best result (0.496 by Oracle) is only available in 
T10U which is not directly comparable to the scores in 
T11SU, just indicative. 
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Figure 6: LR with varying lambda. 

The performance of LR is summarized with respect to λ tuning 
on the corpora of TREC10, TREC11 and TDT3.  The 
performance on each corpus was measured using the 
corresponding metrics, that is, T11SU for the runs on TREC10 
and TREC11, and TDT5SU and Ctrk for the runs on TDT3,.  In 
the case of maximizing the utilities, the “safe” interval for λ is 
between 0 and 0.01, meaning that the performance of 
regularized LR is stable, the same as or improved slightly over 
the performance of standard LR. In the case of minimizing Ctrk, 
the safe range for λ is between 0 and 0.1, and setting λ between 
0.005 and 0.05 yielded relatively large improvements over the 
performance of standard LR because training a model for 
extremely high recall is statistically more tricky, and hence 
more regularization is needed.  In either case, tuning λ is 
relatively safe, and easy to do successfully by cross-corpus 
tuning.  
Another influential choice in our experiment settings is term 
weighting: we examined the choices of binary, TF and TF-IDF 
(the “ltc” version) schemes. We found TF-IDF most effective 
for both Rocchio and LR, and used this setting in all our 
experiments.  

5.3 Percentages of labeled data  
How much relevance feedback (RF) would be needed during the 
AF process is a meaningful question in real-world applications. 
To answer it, we evaluated Rocchio and LR on TDT with the 
following settings: 

• Basic Rocchio, no adaptation at all 

• PRF Rocchio, updating topic profiles without using true 
relevance feedback; 

• Adaptive Rocchio, updating topic profiles using relevance 
feedback on system-accepted documents plus 10 
documents randomly sampled from the pool of system-
rejected documents; 

• LR with 0
rr

=μ , 01.0=λ  and threshold = 0.004; 

• All the parameters in Rocchio tuned on TDT3. 

Table 3 summarizes the results in Ctrk:  Adaptive Rocchio with 
relevance feedback on 0.6% of the test documents reduced the 



tracking cost by 54% over the result of the PRF Rocchio, the 
best system in the TDT2004 evaluation for topic tracking 
without relevance feedback information. Incremental LR, on the 
other hand, was weaker but still impressive. Recall that Ctrk is 
an extremely high-recall oriented metric, causing frequent 
updating of profiles and hence an efficiency problem in LR. For 
this reason we set a higher threshold (0.004) instead of the 
theoretically optimal threshold (0.0017) in LR to avoid an 
untolerable computation cost. The computation time in 
machine-hours was 0.33 for the run of adaptive Rocchio and 14 
for the run of LR on TDT5 when optimizing Ctrk.  Table 4 
summarizes the results in TDT5SU; adaptive LR was the winner 
in this case, with relevance feedback on 0.05% of the test 
documents improving the utility by 20.9% over the results of 
PRF Rocchio. 

Table 3: AF methods on TDT5 (Performance in Ctrk) 
 Base Roc PRF Roc Adp Roc LR 

% of RF 0% 0% 0.6% 0.2% 

Ctrk 0.076 0.0707 0.0324 0.0382 

±% +7% (baseline) -54% -46% 

Table 4: AF methods on TDT5 (Performance in TDT5SU) 
 Base Roc PRF Roc Adp Roc LR(λ=.01) 

% of RF 0% 0% 0.04% 0.05% 

TDT5SU 0.57 0.6452 0.69 0.78 

±% -11.7% (baseline) +6.9% +20.9% 

 
Evidently, both Rocchio and LR are highly effective in adaptive 
filtering, in terms of using of a small amount of labeled data to 
significantly improve the model accuracy in statistical learning, 
which is the main goal of AF. 

5.4 Summary of Adaptation Process 
After we decided the parameter settings using validation, we 
perform the adaptive filtering in the following steps for each 
topic: 1) Train the LR/Rocchio model using the provided 
positive training examples and 30 randomly sampled negative 
examples; 2) For each document in the test corpus: we first 
make a prediction about relevance, and then get relevance 
feedback for those (predicted) positive documents. 3) Model and 
IDF statistics will be incrementally updated if we obtain its true 
relevance feedback. 

6. CONCLUDING REMARKS 
We presented a cross-benchmark evaluation of incremental 
Rocchio and incremental LR in adaptive filtering, focusing on 
their robustness in terms of performance consistency with 
respect to cross-corpus parameter optimization. Our main 
conclusions from this study are the following: 

• Parameter optimization in AF is an open challenge but has 
not been thoroughly studied in the past. 

• Robustness in cross-corpus parameter tuning is important 
for evaluation and method comparison.  

• We found LR more robust than Rocchio; it had the best 
results (in T11SU) ever reported on TDT5, TREC10 and 
TREC11 without extensive tuning. 

• We found Rocchio performs strongly when a good 
validation corpus is available, and a preferred choice when 
optimizing Ctrk is the objective, favoring recall over 
precision to an extreme. 

For future research we want to study explicit modeling of the 
temporal trends in topic distributions and content drifting. 
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