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Abstract. Active Learning methods rely on static strategies for sam-
pling unlabeled point(s). These strategies range from uncertainty sam-
pling and density estimation to multi-factor methods with learn-once-
use-always model parameters. This paper proposes a dynamic approach,
called DUAL, where the strategy selection parameters are adaptively
updated based on estimated future residual error reduction after each
actively sampled point. The objective of dual is to outperform static
strategies over a large operating range: from very few to very many la-
beled points. Empirical results over six datasets demonstrate that DUAL
outperforms several state-of-the-art methods on most datasets.

1 Introduction

Active learning has received significant attention in recent years, but most work
focuses on presenting a new algorithm and showing how for some datasets and
under some operating range it outperforms earlier methods [17,16,6]. Some ac-
tive learning methods perform best when very few instances have been sampled,
whereas others perform best only after substantial sampling. For instance, den-
sity estimation methods perform well with minimal labeled data since they sam-
ple from maximal-density unlabeled regions, and thus help establish the initial
decision boundary where it affects the most remaining unlabeled data [8]. On
the other hand, uncertainty sampling methods “fine tune” a decision bound-
ary by sampling the regions where the classifier is least certain, regardless of
the density of the unlabeled data [2,4]. Such methods work best when a larger
number of unlabeled points may be sampled, as we show later in this paper.
This paper takes a step towards a principled ensemble-based sampling approach
for active learning that dominates either method individually, largely by select-
ing sampling methods based on estimated residual classification error reduction.
Different active learning methods use different selection criteria. For example,
Query-by-Committee [1,2] selects examples that cause maximum disagreement
amongst an ensemble of hypotheses. Hence, it reduces the version space [5] and
is similar to Tong and Koller’s approach [4] which halves the version space in an
SVM setting. Uncertainty sampling [3] selects the example on which the learner
has lowest classification certainty. Version-space reduction methods eliminate
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areas of the parameter space that have no direct effect on the error rate, but
may have indirect effects. Uncertainty sampling is not immune to selecting out-
liers since they have high uncertainty [6], but the underlying data distribution
is ignored. Several active learning strategies including [9,8,6] propose ways to
trade-off uncertainty vs. data density. Xu et al. [8] propose a representative
sampling method which uses the k-means algorithm to cluster the data within
the margin of an SVM classifier and selects the cluster centroids for labeling.
McCallum and Nigam [6] also suggest a clustering based approach using the
EM algorithm. All these methods aim to balance the uncertainty of the sample
with its representativeness, but do so in a fixed manner, rather than by dynam-
ically selecting or reweighing, based on residual error estimation. In this paper,
we introduce a Dual strategy for Active Learning, DUAL, which is a context-
sensitive sampling method. DUAL significantly improves upon the work of [9]
by incorporating a robust combination of density weighted uncertainty sampling
and standard (uniform) uncertainty sampling. The primary focus of DUAL is to
improve active learning for the later portion of the process, rather than tradi-
tional methods that concentrate primarily on the initial dataset labeling. Baram
et al. [10] present an ensemble active learning method that is complementary to
ours, but does not subsume our mid-course strategy-switching method. Baram
et al. develop an online algorithm that selects among three alternative active
sampling strategies using a variant of the multi-armed bandit algorithm [11] to
decide the strategy to be used at each iteration. They focus primarily on select-
ing which sampling method is optimal for a given dataset; in contrast, we focus
on selecting the operating range among the sampling methods. Empirical results
demonstrate that DUAL generally leads to better performance. Furthermore, it
is also empirically shown that 1) DUAL is reliably better than the best of the
single strategies, and 2) it is better across various domains and for both minimal
and copious labeled data volumes.

The paper is organized as follows: Section 2 presents further motivation.
Section 3 summarizes the method of [9]. Section 4 describes our new DUAL
algorithm and presents the results of our empirical studies. In Section 5, we of-
fer our observations and concluding remarks as well as suggestions for potential
future directions.

2 Motivation for DUAL

Nguyen and Smeulders [9] suggest a probabilistic framework where clustering
information is incorporated into the active sampling scheme. They argue that
data points lying on the classification boundary are informative, but using infor-
mation about the underlying data distribution helps to select better examples.
They assume higher density samples lying close to the decision boundary are
more informative. We call their method density weighted uncertainty sampling,
or DWUS for short. DWUS uses the following active selection criterion:

s = arg max
i∈Iu

E[(ŷi − yi)
2 | xi]p(xi) (1)
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Fig. 1. Comparison of Density Weighted versus (standard) uniformly weighted
Uncertainty Sampling on two UCI benchmark datasets

where E[(ŷi − yi)
2 | xi] and p(xi) are the expected error and density of a given

data point xi, respectively. Iu is the index for the unlabeled data. This criterion
favors points that have the largest contribution to the current classification error.
In contrast, one can use an uncertainty-based selection criterion within the same
probabilistic framework as illustrated by the following formula:

s = arg max
i∈Iu

E[(ŷi − yi)
2 | xi] (2)

We refer to the above principle as Uncertainty Sampling for the rest of this pa-
per. Consider Fig. 1, which displays the performance of DWUS and Uncertainty
Sampling on two of the datasets that we explore in more detail later. Combining
uncertainty with the density of the underlying data is a good strategy to reduce
the error quickly. However, after rapid initial gains, DWUS exhibits very slow
additional learning while uncertainty sampling continues to exhibit more rapid
improvement.1 A similar behavior is also evident in [8] where their representa-
tive sampling method increases accuracy in the initial phase while uncertainty
sampling has a slower learning rate, but gradually outperforms their method.

We investigated the Spearman’s ranking correlation over candidates to be
labeled by density and uncertainty in our scenario, and found that they seldom
reinforce each other, but instead they tend to disagree on sample point selection.
At early iterations, many points are highly uncertain. Thus, DWUS can pick high
density points which are lower down in the uncertainty ranking but have a high
absolute uncertainty score. Later, points with high absolute uncertainty are no
longer in dense regions. As a result, DWUS picks points that have moderate
density but low uncertainty because such points are scored highly according
to the criterion in Equation 1. Hence, it wastes effort picking instances whose
selection does not have a large effect on error rate reduction.

Fortunately, we can do better across the full spectrum of labeled instances by
our algorithm DUAL which adopts a dynamically reweighed mixture of density
and uncertainty components and achieves performance superior to its competi-
tors over a variety of datasets. In the following section, we review essential parts
of DWUS and then describe DUAL.
1 Although a quick drop in classification error for DWUS is also observed in [9], they

did not compare with uncertainty sampling.
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3 Density Weighted Uncertainty Sampling (DWUS)

Nguyen and Smeulders [9] assume a clustering structure of the underlying data.
x is the data and y ∈ {+1, 0} is the class label. The cluster label k ∈ {1, 2, ..,K}
indicates the hidden cluster information for every single data point where K is
the number of total clusters. In order to calculate the posterior P (y | x), they
use the following marginalization:

P (y | x)=

K
∑

k=1

P (y, k | x) =

K
∑

k=1

P (y | k, x)P (k | x) (3)

where P (y | k, x) is the probability of the class label y given the cluster k and
the data point x, and P (k | x) is the probability of the cluster given the data
point. But once k is known, y and x are independent since points in one cluster
are assumed to share the same label as the cluster; hence knowing the cluster
label k is enough to model the class label y. Thus:

P (y | x) =

K
∑

k=1

P (y, k | x) =

K
∑

k=1

P (y | k)P (k | x) (4)

P (k | x) is calculated only once unless the data is re-clustered, whereas P (y | k)
is updated each time a new data point is added to the training set. Before
explaining how to estimate these two distributions, we illustrate below how the
algorithm works:

1. Cluster the data.
2. Estimate P (y | k).
3. Calculate P (y | x) (Equation 4).
4. Choose an unlabeled sample based on (Equation 1) and label.
5. Re-cluster if necessary.
6. Repeat steps 2-5 until stop.

We first explain how to induce P (k | x) according to [9]. A Gaussian mix-
ture model is used to estimate the data density using the clustering struc-
ture such that p(x) is a mixture of K Gaussians with weights P (k). Hence,

p(x) =
∑K

k=1 p(x | k)P (k). where p(x | k) is a multivariate Gaussian sharing the
same variance σ2 for all clusters k:

p(x | k) = (2π)−d/2σ−d exp{
− ||x − ck||

2

2σ2
} (5)

where ck is the centroid of the k-th cluster which is determined via the K-
medoid algorithm [12]. It is similar to the K-means algorithm since they both
try to minimize the squared error between the points assigned to a cluster and
the cluster centroid. In K-means, the centroid is the average of all points in the
cluster, whereas in K-medoid the most centrally located point in the cluster is
the centroid. Moreover, K-medoid is more robust to noise or outliers.
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Once the cluster representatives are identified, an EM procedure is applied
to estimate the cluster prior P (k) using the following two steps:

E-step: M-step:

P (k | xi) =
P (k) exp{−||xi−ck||

2

2σ2 }

∑K
ḱ=1 P (ḱ) exp{

−||xi−c
ḱ||

2

2σ2 }

P (k) =
1

n

n
∑

i=1

P (k | xi) (6)

The cluster label distribution P (y | k) is calculated using the following logistic
regression model: P (y | k) = 1

1+exp(−y(ck.a+b)) , a ∈ Rd and b ∈ R are logistic

regression parameters. ck is the k-th cluster centroid, so P (y | k) models the class
distribution for a representative subset of the entire dataset. Points are assigned
to a cluster with the probability P (k | x) so that their labels will be affected by
their cluster membership probabilities (See Equation 4). Hence, a distribution
is learned at each cluster and no cluster purity requirement is forced.

The parameters of the logistic regression model are estimated via the follow-
ing likelihood maximization:

L =
∑

i∈Il∪Iu

ln p(xi; c1, ..., cK , P (1), ..., P (K)) +
∑

i∈Il

lnP (yi | xi;a, b) (7)

where Il and Iu are the indices for labeled and unlabeled data, respectively. The
parameters of the first summand have already been determined by the K-medoid
algorithm and the EM routine in Equation 6. The second summand is used to
estimate the parameters a and b via Equation 4, as follows:

L(a, b) =
λ

2
||a||

2
−

∑

i∈Il

ln

{

K
∑

k=1

P (k | xi)P (yi | k;a, b)

}

(8)

The regularization parameter λ is given initially independently of the data. Since
the problem is convex, it has a unique solution which can be solved via Newton’s
algorithm. Then we can calculate the probability P (yi | k; â, b̂) using the logistic

regression model and obtain the class posterior probability P (yi | xi; â, b̂) using
Equation 4. The label ŷi is predicted for each unlabeled point xi according
to Bayes rule. Finally, active point selection is done by Equation 1. The error
expectation for a given unlabeled point E[(ŷi − yi)

2 | xi] in that equation is:

E[(ŷi − yi)
2 | xi] = (ŷi − 1)2P (yi = 1 | xi) + (ŷi)

2P (yi = 0 | xi) (9)

Since the probability P (yi | xi) is unknown, its current approximation P (yi |

xi; â, b̂) is used instead. Additionally, data points are re-clustered into smaller
clusters as the expected error reduces. The reason is that it is important to make
significant changes in the decision boundary during the early iterations of active
sampling. Later the classification boundary becomes more stable and thus needs
to be finely tuned. Additional details can be found in [9].
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4 DUAL Algorithm and Experimental Results

4.1 Description of the DUAL Algorithm

DUAL works as follows: It starts executing DWUS up until it estimates a cross-
over point with uncertainty sampling by predicting a low derivative of the ex-

pected error, e.g. ∂ǫ(DWUS)
∂xt

≤ δ. The derivative estimation need not be exact,
requiring only the detection of diminishing returns which we explain soon. Then,
it switches to execute a combined strategy of density-based and uncertainty-
based sampling. In practice, we do not know the future classification error of
DWUS, but we can approximate it by calculating the average expected error of
DWUS on the unlabeled data. It will not give us the exact cross-over point, but
it will provide a rough estimate of when we should consider switching between
methods. The expected error of DWUS on the unlabeled data can be evaluated
as follows:

ǫ̂t(DWUS) =
1

nt

∑

i∈Iu

E[(ŷi − yi)
2 | xi] (10)

where E[(ŷi−yi)
2 | xi] is calculated as in Equation 9. Moreover, it is re-calculated

at each iteration of active sampling. t is the iteration number, and nt is the
number of unlabeled instances at the t-th iteration and Iu is the set of indices
of the unlabeled points at time t. By monitoring the average expected error
at every single iteration, we can estimate when DWUS’ performance starts to

saturate, i.e., ∂ǫ̂(DWUS)
∂xt

≤ δ. δ is assigned a fixed small value in our evaluations
[See Section 4.2 for how it was estimated]. When it is near zero, this is equivalent
to detecting when a method is stuck in local minima/plateau in gradient descent
methods. In fact, this principle is flexible enough to work with any two active
learning methods where one is superior for labeling the initial data and the
other is favorable later in the process. It generalizes to N sampling methods by
introducing additional estimated switchover points based on estimated derivative
of expected error for each additional sampling strategy.

We know that the strength of DWUS comes from the fact that it incor-
porates the density information into the selection mechanism. However, as the
number of iterations increases uncertainty sampling outperforms DWUS and
DWUS exhibits diminishing returns. We propose to use a mixture model for
active sampling after we estimate the cross-over:

x∗
s = arg max

i∈Iu

π1 ∗ E[(ŷi − yi)
2 | xi] + (1 − π1) ∗ p(xi) (11)

It is desirable for the above model to minimize the expected future error. If we
were to select based on only the uncertainty, then the chosen point would be
x∗

US = arg max
i∈Iu

E[(ŷi − yi)
2 | xi]. After labeling x∗

US , the expected loss is:

fUS =
1

n

∑

j

EL+{x∗
US

,y}[(ŷj − yj)
2 | xj ] (12)
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The subscript L+{x∗
US , y} indicates that the expectation is calculated from the

model trained on the data L + {x∗
US , y}. Assume fUS=0, then we can achieve

the minimum expected loss by forcing π1 = 1; hence x∗
s = x∗

US . The appropriate
weight in this scenario is inversely related with the expected error of uncertainty
sampling. Thus, we can replace the weights by π1 = 1− fUS , and 1− π1 = fUS ,
and obtain the following model:

x∗
s = arg max

i∈Iu

(1 − fUS) ∗ E[(ŷi − yi)
2 | xi] + fUS ∗ p(xi) (13)

Achieving the minimum expected loss is guaranteed only for the extreme case
where the expected error, fUS , of uncertainty sampling is equal to 0. However,
correlating the weight of uncertainty sampling with its generalization perfor-
mance increases the odds of selecting a better candidate after the cross-over.

In the real world, we do not know the true value of fUS . So we need to ap-
proximate it. After estimating the cross-over, we are interested in giving higher
priority to uncertainty, reflecting how well uncertainty sampling would perform
on the unlabeled set. Therefore, we approximate fUS as ǫ̂(US), the average ex-
pected error of uncertainty sampling on the unlabeled portion of the data. This
leads us to the following selection criterion for DUAL:

x∗
s = arg max

i∈Iu

(1 − ǫ̂(US)) ∗ E[(ŷi − yi)
2 | xi] + ǫ̂(US) ∗ p(xi) (14)

ǫ̂(US) is updated at every iteration t after the cross-over. Its calculation is ex-
actly the same as in Equation 10. However, the data to sample from is restricted
to the already labeled examples by active selection. We construct a set with
the actively sampled examples by DWUS until the cross-over, and call it set A.
Uncertainty sampling is allowed to choose the most uncertain data point from
only among elements in set A by estimating the posterior P (yi | xi; â, b̂) over
the initially labeled data. The chosen point is added to to the initial labeled set
for uncertainty sampling and removed from set A. The average expected error
of uncertainty sampling is calculated on the remaining unlabeled data. Then,
DUAL selects the next data point to label via the criterion in Equation 14. This
labeled point is also added to set A. Hence, set A is dynamically updated at
each iteration with the actively sampled points. Consequently, in order to calcu-
late the expected error of uncertainty sampling the algorithm never requests the
label of a point that has not already been sampled during the active learning
process. Such a restriction will prevent an exact estimate of the expected error.
But, it is a reasonable alternative, and introduces no additional cost of labeling.
The pseudo-code for the DUAL algorithm is given as The Dual Algorithm.

The DUAL Algorithm

program DUAL(Labeled data L, Unlabeled data U, max number of

iterations T, and δ.)

begin

Set the iteration counter t to 0.

while(not switching point) do
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Run DWUS algorithm and compute
∂ǫ̂(DWUS)

∂xt
.

if(
∂ǫ̂(DWUS)

∂xt
> δ)

Choose the point to label:

x∗
s = arg max

i∈Iu

E[(ŷi − yi)
2 | xi]p(xi)

t=t+1 (Increment counter t)

else Hit the switching point.

while(t < T)

Compute E[(ŷ − y)2|x], p(x) via DWUS, and ǫ̂t(US) via

uncertainty sampling.

Choose the point according to:

x∗
s = arg max

i∈Iu

(1 − ǫ̂t(US)) ∗ E[(ŷi − yi)
2 | xi] + ǫ̂t(US) ∗ p(xi)

t=t+1

end.

4.2 Experimental Setup

To evaluate the performance of DUAL, we ran experiments on UCI benchmarks:
diabetes, splice, image segment, and letter recognition [18]. Some of these prob-
lems are not binary tasks so we used the random partitioning into two classes
as described by [13]. For the letter recognition problem, we picked three pairs of
letters (M-vs-N, O-vs-D, V-vs-Y) that are most likely to be confused with each
other. Thus, we examine six binary discrimination tasks. For each dataset, the
initial labeled set is 0.4% of the entire data and contains an equal number of
positive and negative instances. For clustering, we followed the same procedure
used by [9] where the initial number of clusters is 20 and clusters are split until
they reach a desired volume. The values of the parameters are given in Table 1
along with the basic characteristics of the datasets. These parameters and the δ

parameter used for switching criteria were estimated on other data sets and held
constant throughout our experiments, in order to avoid over-tuning. We com-
pared the performance of DUAL with that of DWUS, uncertainty sampling, rep-
resentative sampling2 [8], density-based sampling and the COMB method of [10].
Density-based sampling adopts the same probabilistic framework as DWUS but
uses only the density information for active data selection: x∗

s = arg max
i∈Iu

p(xi).

COMB uses an ensemble of uncertainty sampling, sampling method of [16], and
a distance-based strategy choosing the unlabeled instance that is farthest from
the current labeled set. COMB uses SVM with Gaussian kernel for all three
strategies. For further implementation details on COMB, see [10].

The performance of each algorithm was averaged over 4 runs. At each run, a
different initial training set was chosen randomly. At each iteration of each algo-
rithm, the active learner selected a sample from the unlabeled pool to be labeled.
After it has been added to the training set, the classifier is re-trained and tested
on the remaining unlabeled data and the classification error is reported. We also

2 We used k=10 for k-means clustering as it produced better performance in [8], and
selected the centroid of the largest cluster in the linear SVM margin.
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Table 1. Characteristics of the Datasets, Values of the Parameters and p-value
for significance tests after 40 iterations

Dataset Total Size +/- Ratio dims(d) sigma(σ) lambda(λ) DUAL>DWUS

Diabetes 768 0.536 8 0.5 0.1 p < 0.0001
Splice 3175 0.926 60 3 5 p < 0.0001
Image 2310 1.33 18 0.5 0.1 p < 0.0001
M-vs-N 1575 1.011 16 0.1 0.1 p < 0.0001
O-vs-D 1558 0.935 16 0.1 0.1 p < 0.0001
V-vs-Y 1550 0.972 16 0.1 0.1 p < 0.0001

conducted significance tests between DUAL and DWUS to report whether they
perform significantly different. In order to determine whether two active learning
systems differ statistically significantly, it is common to compare the difference in
their errors averaged over a range of iterations [14,20]. Comparing performance
over all 100 iterations would suppress detection of statistical differences since
DUAL executes DWUS until cross-over. We conducted the comparison when
they start to differ, which is on average after 40 iterations; we compute the two-
sided paired t-tests by averaging from the 40th to 100th iteration. Table 1 shows
that DUAL statistically outperforms DWUS in that range. For the remaining
comparisons, we compute 2-sided paired t-tests over the full operating range
since we want to know if DUAL is superior to the other methods more generally
and DUAL does not execute these other methods at any iteration.

5 Observations and Conclusion

Figure 2 presents the improvement in error reduction using DUAL over the other
methods. We only display results on 4 datasets due to space limitations. For the
results on all datasets see www.cs.cmu.edu/~pinard/DualResults. DUAL out-
performs DWUS and representative sampling both with p < 0.0001 significance.
DUAL outperforms COMB with p < 0.0001 significance on 4 out of 6 datasets,
and with p < 0.05 on Image and M-vs-N data sets. We also calculate the error
reduction of DUAL compared to the strong baseline DWUS. For instance, at the
point in each graph after 3/4 of the sampling iterations after cross-over occurs,
we observe 40% relative error reduction on O-vs-D data, 30% on Image, 50%
on M-vs-N, 27% on V-vs-Y, 10% on Splice, and 6% on Diabetes dataset. These
results are significant both statistically and also with respect to the magnitude
reduction in relative residual error. DUAL is superior to Uncertainty sampling
(p < 0.001) on 5 out of 6 datasets. We see on the V-vs-Y data that the cross-over
between DWUS and uncertainty sampling occurs at a very early stage, but the
current estimate of the expected error of DWUS to switch selection criteria is
not accurate at the very early points in that dataset. Clearly, DUAL might have
benefited from changing its selection criterion at an earlier iteration.

As part of a failure analysis and in order to test this hypothesis, we conducted
another set of experiments where we simulated a better relative error estimator
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for strategy switching. Fig. 3 demonstrates that DUAL outperforms all other
methods when the true cross-over point is identified, indicating that better error
estimation is a profitable area of research. In fact, one hypothesized solution is
to switch when P (error(M2) | X) < P (error(M1) | X) + ǫ, which considers the
probability that over future selected instances method 2, M2, will have less error
than method 1, M1. We plan to study more robust switching criteria.

DUAL outperforms Density-based sampling (p < 0.0001) on all but splice
data. Density-based sampling performs worst for almost 40 iterations but then
beats all of the others thereafter, totally breaking the pattern observed in the
other datasets. Currently, DUAL only estimates how likely the uncertainty score
is to lead to improvement, but the density-based method may also be likely to
improve. One strategy is to calculate the expected error ǫ̂(DS) of density-based
sampling and modify Equation 14 to obtain the following:

x∗
s = arg max

i∈Iu

{ǫ̂(DS) ∗ E[(ŷi − yi)
2 | xi] + (1 − ǫ̂(DS)) ∗ p(xi)} (15)

Fig. 4 presents the result after the modification in Equation 15. The adjustment
helps DUAL make a significant improvement on the error reduction. Moreover,
it consistently decreases the error as more data is labeled, hence its error reduc-
tion curve is smooth as opposed to the higher variance of density-based sampling.
This suggests that pure density-based sampling is inconsistent in reducing error
since it only considers the underlying data distribution regardless of the current
model. Thus, we argue that DUAL may be more reliable than individual scor-
ing based on density due to its combination formula that adaptively establishes
balance between two selection criteria. Even though a strategy such as uncer-
tainty or density based sampling performs well individually, Figures 2, 3 and 4
illustrate that it is more advantageous to use their combination.

To conclude, we presented DUAL which robustly combines uncertainty and
density information. Empirical evaluation shows that, in general, this approach
leads to more effective sampling than the other strategies. Xu et al. [8] also
propose a hybrid approach to combine representative sampling and uncertainty
sampling. Their method, however, only applies to SVMs and only tracks the
better performing strategy rather than outperforming both individual strate-
gies. Baram et al. also reports comparable performance for COMB to the best
individual sampling strategy, but it is sometimes marginally better, and some-
times marginally worse and hence is not consistently the best performer. Our
performance, on the contrary, exceeds that of the individually best sampling
strategy in most cases by statistically significant margins. Hence, DUAL clearly
goes beyond COMB in terms of lower classification error and faster convergence.
Furthermore, our framework is general enough to fuse active learning methods
that exhibit differentiable performance on the whole operating range. It can also
be easily generalized to multi-class problems: one can estimate the error reduc-
tion globally or per-class using class-weighted or instance-weighted average, and
then use the same cross-over criterion. While we use logistic regression, any prob-
abilistic classifier can be adapted for use in DUAL. Our main contributions are
in estimating the error of one method using the labeled data selected by another,
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and robustly integrating their outputs when one method is dominant (Equation
14 vs. Equation 15). Our future plan is to generalize DUAL to using a relative
success weight, and to extend this work to ensemble methods that involve more
than two strategies, maximizing ensemble diversity [15,14,10]. Moreover, we plan
to investigate better methods for estimating the cross-over, such as estimating
a smoothed version of ∂ǫ̂

∂xt
rather than a local-only version.
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