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Abstract

Parameterized Appearance Models (PAMs) (e.g. eigen-
tracking, active appearance models, morphable models) use
Principal Component Analysis (PCA) to model the shape
and appearance of objects in images. Given a new image
with an unknown appearance/shape configuration, PAMs
can detect and track the object by optimizing the model’s
parameters that best match the image. While PAMs have
numerous advantages for image registration relative to al-
ternative approaches, they suffer from two major limita-
tions: First, PCA cannot model non-linear structure in the
data. Second, learning PAMs requires precise manually la-
beled training data. This paper proposes Parameterized
Kernel Principal Component Analysis (PKPCA), an exten-
sion of PAMs that uses Kernel PCA (KPCA) for learning
a non-linear appearance model invariant to rigid and/or
non-rigid deformations. We demonstrate improved perfor-
mance in supervised and unsupervised image registration,
and present a novel application to improve the quality of
manual landmarks in faces. In addition, we suggest a clean
and effective matrix formulation for PKPCA.

1. Introduction

Since the early work of Sirovich and Kirby [33] param-
eterizing the human face using Principal Component Anal-
ysis (PCA) and the successful eigenfaces of Turk and Pent-
land [34], many computer vision researchers have used
PCA techniques to construct linear models of optical flow,
shape or graylevel [5, 6, 8, 26, 21, 7, 16]. The modeling
power of PCA techniques is especially useful when applied
to visual data, because there is a need for dimensionality
reduction given the increase in the number of features.

Parameterized Appearance Models (PAMs) (e.g. eigen-
tracking [6], active appearance models [8, 12, 24, 16], mor-
phable models [7, 21, 35]) have proven to be a good statis-
tical tool to build models of shape and appearance variation
of objects. In particular, PAMs have been extensively ap-

Figure 1. Unsupervised learning of a non-linear generative model
of frontal face images. Red dots denote initial manual labeling.
Yellow crosses represent the automatic re-labeling using PKPCA.
Images are better seen in color.

plied to the detection, tracking and synthesis of faces dur-
ing the last decade. PAMs utilize PCA to model shape and
appearance variations across pose, expression, illumination
and identity. However, the linear assumption of PCA does
not always hold true. For instance, modeling pose changes
with 2D models is a very rough approximation (e.g. points
disappear with occlusion) and non-linear models are pre-
ferred. Similarly, the space of frontal faces is likely to be
better described by a non-linear model to account for differ-
ent expressions, illumination, beards or glasses. In fact, nu-
merous papers have shown the advantages of Kernel PCA
(KPCA) over PCA in face recognition or image modeling
tasks (e.g. [38, 28, 37, 25, 30]). This suggests that KPCA
is a more powerful model for image analysis, provided that
the correct kernel and kernel parameters are known. This
paper describes an extension of PAMs, Parameterized Ker-
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nel PCA (PKPCA), a framework for learning a non-linear
generative model of objects’ appearance and shape in a su-
pervised and unsupervised manner.

Fig. 1 illustrates an application of PKPCA. The red dots
represents the manual labeling done by experienced label-
ers to build AAMs [8]. The yellow crosses are the result
of re-labeling using PKPCA. PKPCA learns, in an unsu-
pervised manner, a non-linear model of frontal faces from
600 images (starting from the red dots). As it can be ob-
served (see blue circles), PKPCA is able to learn a more
consistent labeling among subject’s faces (e.g. nose, cor-
ners of the mouth, eyes). Moreover, PKPCA builds a more
compact model (less eigenvectors), which is less prone to
over-fitting and more computationally efficient.

The rest of this paper is organized as follows. Sec. 2 re-
views previous works on image alignment with appearance
models. Sec. 3 proposes an energy-based framework for
learning KPCA. Sec. 4 derives PKPCA by incorporating
rigid and non-rigid transformations into the KPCA formu-
lation. Sec. 5 illustrates the benefits of our approach for
rigid/non-rigid supervised and unsupervised image align-
ment.

2. Previous work

Over the last decade, appearance models have become
increasingly important in computer graphics and vision. In
particular, parameterized appearance models (PAMs) have
proven useful in the detection, tracking, and synthesis of hu-
man faces from video [7, 6, 5, 14, 8, 24, 11, 26, 21, 16, 35].
One of the main benefits of PAMs is its use of gradient de-
scent methods to align images with high dimensional defor-
mation models.

Although widely used, one of the main limitations of
PAMs is its use of a linear model. Several attempts have
been made to extend appearance models in order to cope
with non-linearities. Cootes et al. [10] build view-based Ac-
tive Appearance Models (AAMs) capable of tracking non-
linear pose changes from profile to profile by continuously
switching several discrete linear appearance models. How-
ever, it remains unclear how to impose consistency of the
identity parameters across multiple views. Romdhani et
al. [28] use KPCA with point distribution models to model
the shape out-of-plane motion. However, the KPCA is only
applied to the shape, and it is not embedded into the appear-
ance model that drives the AAM fitting. Moreover, finding
the pre-image shape is an iterative procedure prone to en-
countering local minima. More importantly, the model is
learned in a supervised manner (i.e. manual labeling). In the
context of discriminative models, Avidan [1] has proposed
a gradient-based method to make support vector machines
invariant to translations.

Supervised image alignment [7, 6, 8, 24, 11] is well un-
derstood in the literature. By supervised alignment, we re-

fer to an image that is registered w.r.t. a previously learned
model (off-line). Learning the model in an unsupervised
manner has been less explored. Frey and Jojic [14] pro-
pose a method for learning a factor analysis model invari-
antly to geometric transformations. The proposed method
grows polynomially with the number of possible spatial
transformations, and it can be computationally intensive
when working with high dimensional motion models. To
improve upon this problem, De la Torre and Black [11] pro-
pose parameterized component analysis, a gradient-based
method that learns a PCA model invariantly to affine trans-
formations. More recently, Miller et al. have proposed
the Congealing method [23, 19] that uses an entropy mea-
sure to align images with respect to the distribution of
the data. Baker et al. [2] learned an AAM invariantly to
rigid and non-rigid motion. Kookinos and Yuille [22] pro-
posed a probabilistic framework and extended previous ap-
proaches [2, 23, 11] to deal with articulated objects using a
Markov Random Field (MRF) on top of the AAM.

Unlike previous works, we integrate the kernel methods
in the core of the AAM framework. In particular, we de-
velop a gradient descent algorithm for the efficiently fitting
of kernel appearance models into new images. Moreover,
we show how to learn the kernel appearance model in an un-
supervised fashion invariantly to rigid and non-rigid trans-
formations. Furthermore, we suggest a clean and effective
matrix formulation.

3. Energy-based PCA methods

Component Analysis (CA) methods (e.g. PCA, LDA,
Tensor Factorization) have been successfully applied in nu-
merous classification, clustering and dimensionality reduc-
tion tasks in the last two decades. Many CA techniques
are especially appealing because they can be formulated as
eigen-problems, offering great potential for efficient learn-
ing of linear and non-linear data representations without
local minima. However, the eigen-formulation often ob-
scures important aspects of the learning process such as un-
derstanding normalization factors, reducing effect of noise,
dealing with missing data, and learning the kernel. In this
section, we review previous work on energy-based func-
tions for PCA using a unified matrix formulation.

3.1. Principal component analysis

PCA is a statistical technique useful for dimensionality
reduction, see [13, 20] for a review of applications and ex-
tensions. Let D = [d1 d2 ... dn] be a matrix D ∈ �d×n,
see notation1, where each column di is a data sample,

1Bold capital letters denote a matrix D, bold lower-case letters a col-
umn vector d. dj represents the jth column of the matrix D. dij denotes
the scalar in the row i and column j of the matrix D and the scalar i-th
element of a column vector dj . All non-bold letters represent scalar vari-



n is the number of training samples, and d is the num-
ber of features (pixels). The principal components maxi-
mize

∑n
i=1 ||BT di||22 = ||BT ΣB||F , with the constraint

BT B = I, and where Σ = DDT =
∑

i didT
i is the

covariance matrix (assuming zero mean). The columns of
B ∈ �d×k (principal components) form an orthonormal
basis that spans the principal subspace of the data D. If the
effective rank of D is much less than d, we can approxi-
mate the column space of D with k � d principal compo-
nents. The data di can be approximated as a linear com-
bination of the principal components as drec

i = BBT di

where ci = BT di are the linear coefficients obtained by
projecting the training data onto the principal subspace; that
is, C = BT D ∈ �k×n.

The optimal B can be computed as the leading eigen-
vectors of DDT [20]. In cases where d � n, it will be
more convenient to compute the eigenvectors of DT D that
are related to the eigenvectors of DDT . However, for large
data sets of high dimensional data, formulating PCA as an
error function [27] and applying numerical optimization al-
gorithms is a more efficient procedure (in both space and
time) to compute B. Moreover, error functions provide an
easier interpretation and generalization. Several error func-
tions exist of which stationary points are solutions of PCA
(i.e. the subspace is the same as PCA). Among them, the
most appealing one is formulated as [3, 32]:

E1(B,C) =
n∑

i=1

||di − Bci||22 = ||D − BC||F (1)

A common approach to optimize eq. 1 alternates between
solving for B while C is fixed and vice versa. This tech-
nique is commonly known as Alternated Least Squares
(ALS) or Criss-Cross Regression.

3.2. Kernel PCA

KPCA [29, 31] is a popular generalization of PCA that
allows non-linear feature extraction. KPCA maps the data
to a (usually) higher dimensional space, where the data
can be linearly modeled (assuming the correct mapping is
found). There is no need to explicitly define the mapping
using the ”kernel trick”. KPCA uses a kernel function that
implicitly defines the non-linear mapping.

Consider a lifting of the original points to a higher di-
mensional space Γ = [ φ(d1) φ(d2) · · · φ(dn) ] where φ
defines the mapping. The kernelized version of eq. 1 can be
written as:

E2(B,C) = ||Γ − BC||F (2)

ables. diag is an operator that transforms a vector to a diagonal matrix or
takes the diagonal of the matrix into a vector. 1k ∈ �k×1 is a vector of
ones. Ik ∈ �k×k is the identity matrix. tr(A) =

∑
i aii is the trace of

the matrix A and |A| denotes the determinant. ||A||F = tr(AT A) =
tr(AAT ) designates the Frobenius norm of matrix A.

Computing the optimal B = ΓCT (CCT )−1 and substitut-
ing this value into eq. 2, it can be shown that:

E2(C) ∝ −tr(CKCT (CCT )−1) (3)

where K = ΓT Γ ∈ �n×n is the standard kernel matrix.
Each element kij of K represents the similarity between
two samples by means of a kernel function (e.g. Gaussian
Radial Basis Function, polynomial). Optimizing E2 w.r.t.
C can be achieved by computing the leading eigenvectors
of K (C is the transpose of the eigenvector matrix). After
the diagonalization, CKCT = Λ and CCT = Ik. The
computational cost of the eigen-decomposition is O(n3)
(no sparsity is assumed), where n is the number of sam-
ples. In KPCA, it is (usually) not convenient to compute
the eigenvectors of ΓΓT since the dimension of the matrix
can be very high dimensional (including infinity).

For large amounts of data (large n), an iterative approach
to computing KPCA is computationally more efficient. Re-
call that B can be expressed as linear combination of the
mapped original data Γ. That is, B = Γα. Substituting this
expression into eq. 2 results in:

E3(α,C) = ||Γ(In − αC)||F (4)

Assuming that K is invertible, similarly to iterative PCA,
we can alternate between computing α and C as:

α = CT (CCT )−1 & C = (αT Kα)−1αT K (5)

The computational cost of each iteration is O(n2k).

4. Parameterized KPCA

Previous section has related the KPCA learning problem
to an alternate optimization and made use of the “kernel
trick” for effective optimization. This section demonstrates
how to parameterize KPCA to compensate for rigid and
non-rigid motion. In particular, we show how to register
a new image w.r.t. a previously learned KPCA model (su-
pervised), and how to learn the KPCA model invariantly to
non-rigid geometric transformations (unsupervised).

4.1. Supervised registration with PKPCA

This section extends previous work on Eigentracking [6],
AAMs [8] and morphable models [7, 21]) by incorporating
KPCA into the formulation.

4.1.1 Rigid motion

We parameterize the image d(f(x, a)) ∈ �d×1 with a
rigid geometric transformation f(x, a) [6, 8, 21]. In the

case of an affine transformation, f(x,a) =

(
a1

a2

)
+(

a3 a4

a5 a6

) (
x
y

)
where a = (a1, a2, a3, a4, a5, a6) are



the affine parameters and x = (x1, y1, · · · , xn, yn) is a vec-
tor containing the coordinates of the pixels of a given image
region. Once the image has been parameterized, the super-
vised alignment problem can be defined as recovering the
motion parameters a that align the image w.r.t the kernel
subspace, that is, minimizing:

E4(cn,a) = ||φ(
d(f(x,a))

) − Bcn||22 (6)

Using the fact that BT B = Λ, and defining k(x,y) as the
kernel function, E4 can be rewritten as:

E4(a) =k(d(f(x, a),d(f(x,a))−
φ(d(f(x,a)))T ΓCT Λ−1CΓT φ(d(f(x,a))) (7)

In eq. 7, we have marginalized the parameter cn from
the optimization process. However, the minimization prob-
lem remains highly non-linear. Recall that C is the matrix
containing the eigenvectors of the kernel matrix, K, learned
in the training process. To optimize over the motion pa-
rameters, a, we use a Gauss-Newton [4, 6] descent scheme
with closed-form increments as in [11]. Following previous
work in optical flow and appearance tracking [4, 6, 8, 11],
we expand the image changes using Taylor series. a0 is the
initial motion estimation of rigid parameters and Δa is the
motion increment.

d
(
f(x, a0 + Δa)

)
= d(f(x,a0)) + Ja(a0)Δa + h.o.t. (8)

h.o.t. denotes higher order terms of the expansion.

Ja(a0) = [∂d(f(x,a0))
∂a1

. . . ∂d(f(x,a0))
∂a6

] is the Jacobian
matrix evaluated at a0. To optimize over a in the case of the
RBF Gauassian kernel, we use a fixed-point updating. E4

can be rewritten as:

E4(a) ∝ −rT M r (9)

with M = CT Λ−1C & ri = e−γ||pi+JΔa||22 ∀i

After differentiating E4 w.r.t. Δa and setting it to zero,
eq. 7 can be updated as:

∂E4

∂Δa
=

∑
ij

wij(4J
T JΔa + 2JT pi + 2JT pj) = 0

pi = d(f(x,a0)) − di, wij ≈ mije
−γ||pi||22−γ||pj ||22

Δa = −(
∑
ij

2wijJ
T J)−1JT

∑
ij

wij(pi + pj)

= − 1

1T
nW1n

(JT J)−1JT PW1n (10)

4.1.2 Non-rigid motion

In the previous section, we have parameterized the data with
a rigid transformation. In many situations, however, it is in-
teresting to recover non-rigid motion (e.g. modeling facial
expression). In this section, we propose an extension of sec-
tion 4.1.1 that takes into account non-rigid motion.

A simple way to incorporate non-rigid motion is to
change the definition of f . Consider f(Bscs,a) =
f(

∑k
i=1 cs

ib
S
i , a), where Bs is a non-rigid shape model

learned by computing PCA on a set of registered shapes [9].
cs represent the non-rigid parameters, and a denote the rigid
parameters. In this case, f(Bscs, a) will model rigid and
non-rigid motion. Aligning a new image w.r.t. the non-rigid
model is done minimizing:

E5(a, cn, cs) = ||φ(
d(f(Bscs,a))

) − Bcn||22
=k(d(f(Bscs, a)),d(f(Bscs, a)))− (11)

φ(d(f(Bscs,a)))T ΓCT Λ−1CΓT φ(d(f(Bscs, a)))

Similar to the rigid case, we make a first order approxima-
tion of: d

(
f(Bs(cs+Δcs), a+Δa)

)
= d(f(Bsc0

s,a
0))+

Js(c0
s, a

0)Δs + h.o.t., where s = [a cs]. The updates are
equivalent to the rigid motion case of eq. (10); the differ-

ence is the use of a different Jacobian Js =
∂d

(
f(Bsc0

s,a0)
)

∂s .
We omit the expressions in the interest of space.

4.2. Unsupervised registration with KPCA

In Sec 3.2, the KPCA has been learned off-line from a
set of manually labeled or segmented images. The KPCA
was used in section 4.1 for supervised alignment. However,
manually labeling images is often time consuming and error
prone. This section extends previous expressions (Eq. 7 and
Eq. 6) to learn the KPCA model in an unsupervised manner.

Learning KPCA invariantly to rigid and non-rigid geo-
metric transformations requires learning B and Bs. The
unsupervised alignment problem minimizes:

E6(A,Ca, Cs,B,Bs) =
n∑

i=1

||φ(
di(f(B

scs
i ,ai))

) − Bca
i ||22

subject to BT B = Λ, & BsT Bs = Is (12)

w.r.t. to the rigid motion parameters A = [a1 · · · an],
the appearance coefficients Ca = [ca

1 · · · ca
n], the shape

coefficients Cs, the shape bases Bs, and appearance bases
B. The algorithm alternates between two steps: the first
step, registers each of the images w.r.t. to an initial model
by computing A and Cs, while Ca is marginalized. The
second step recomputes the matrix Ca (eigenvectors of K)
and Bs using the new aligned landmarks. The Bs matrix
contains the modes of shape variation that preserve x% of
shape energy (typically 90%), after performing procrustes
in the shape landmarks. After the first iteration, we add
additional modes in Bs to allow translational movement of
some of the landmarks, otherwise Bs would be the same at
each iteration.

5. Experiments

In this section, we report experimental results for super-
vised and unsupervised image registration, and compare the



results to previous methods for rigid appearance registration
(Eigentracking [6]) , non-rigid registration (AAMs [8]), and
unsupervised registration (Congealing [23]).

5.1. Supervised alignment

This section highlights the benefits of registering with
KPCA rather than linear PCA for rigid (i.e. [6]) and
rigid/non-rigid (i.e. [8]) motion models.

5.1.1 Rigid appearance registration

Many recognition algorithms operate on the basis that the
object to be recognized is seen in a canonical pose. In this
experiment, we show how to register an object with respect
to a generic model that contains all possible classes. Since
the classes are very diverse, it is unlikely that a linear as-
sumption will hold.

We selected 48 objects from the Amsterdam Library of
Object Images database [15]. Each object is recorded un-
der 8 different illumination conditions and the image size is
72×96. Some examples of objects are given in fig. 2.

Figure 2. Some images from the ALOI database

For each object, seven images were selected for train-
ing and the last one was used for testing. We shifted the
test image five pixels horizontally and five pixels vertically.
Using an affine transformation as rigid motion, we tried to
recover the translation using Eigentracking (PCA) [6] and
supervised PKPCA (rigid). We retained 70% of the energy
for both methods, which was the best setting for both. Fig. 3
plots the errors for each of the 48 images. The error is the
difference between the recovered translation and the initial
perturbation, i.e. |tx − 5| + |ty − 5|. As shown in fig. 3,
PKPCA allows for more accurate registration starting from
the same initial configuration. At first, this result seems to
be counter intuitive because images of the same object at
different illuminations often form a linear subspace (assum-
ing Lambertian surfaces). However two noteworthy fac-
tors exist: First, the linearity assumption breaks down when
combining images of different objects. Second, the object
surfaces are not Lambertian and there are shadow effects.
In this experiment, we have used the RBF Gaussian kernel
for KPCA. Fig. 3 shows the reconstruction error, PKPCA
achieves better reconstruction and alignment.

Figure 3. Top: error versus testing images. Bottom: left) original
image, center) PCA reconstruction, right) KPCA reconstruction

5.1.2 Registering faces with PKPCA

Accurate alignment of faces is a very important step in ap-
plications such as facial expression analysis or face recogni-
tion. AAMs and MMs [8, 12, 16, 24, 35] are state-of-the-art
algorithms for face alignment. In this section, we compare
PKPCA and AAMs for non-rigid alignment on the CMU
Multi-PIE database [18].

We randomly select 700 face images (120×160) con-
taining 5 different expressions: smile, disgust, surprise,
scream and squint (roughly 140 images each). All images
are frontal and are taken under the same illumination condi-
tions. Each face is manually labeled with 68 landmarks as
shown in fig. 4a. A PCA model of shape is built retaining
80% of the energy [8, 12, 24]. The total number of param-
eters to recover is 12, six for affine transformation and an-
other six for shape variation. For appearance modeling, we
extract the intensity values of pixels inside the rectangular
patches around the landmarks as in [12]. Figure 4b shows
an example of patches for landmarks around the mouth area.
Both PKPCA and linear PCA alignment systems are trained
by retaining 80% of the energy. We use 100 testing images

Figure 4. (a) example of landmarks associated with each face, (b)
patches for appearance modeling, (c) example of shape distortion

and randomly perturb the affine and non-rigid transforma-
tion with increasing power. Figure 4.c shows an example
of such perturbation. The correct landmarks are marked in
cyan (circles), while the transformed shape is shown in yel-



low (stars). Note that none of the subjects in the testing
images are in the training set. For each testing image, we
record the sum of absolute differences between the ground
truth landmarks and the recovered ones. Fig. 5 shows the
average and standard deviation of the alignment error as a
function of the amount of perturbation. As can be observed,
PKPCA provides better alignment in comparison with lin-
ear PCA, for the same percentage of energy preserved in
the models. The difference is especially significant for large
amounts of perturbation.

Figure 5. Aligment error versus amount of perturbation.

5.2. Unsupervised alignment

This section shows the benefits of unsupervised align-
ment in two data sets, the USPS dataset and Multi-PIE [18].

5.2.1 USPS data set

Fig. 6 shows the results of jointly registering and learning
the model for the USPS data set. We randomly select a set S
of 100 images (16×16) of ten hand-written digits from the
USPS dataset (fig. 6.a). Figure 6.b shows S after 5 itera-
tions. The energy amounts preserved by KPCA at iterations
1, 2, 3, 4 and 5 are 70%, 72.5%, 75%, 77.5%, and 80%
respectively. The initial set S requires 33 principal compo-
nents to preserve 80% of the energy. After jointly align-
ing the data and computing PKPCA, only 6 eigen-bases are
needed to preserve 80% of the energy. This indicates that
after convergence, we obtain a more compact model, likely
to have better generalization properties.

For comparison purposes, we also perform unsupervised
alignment using the Congealing method [23]. To avoid
warping outside image boundaries, we pad the images with
15-pixel white borders on each side. The experiment is done
using the code provided by the author 2 for affine transfor-
mation with 80 iterations. The result is given in Fig. 6c.
As can be seen, our method produces better visual results.
Moreover, the number of bases to encode data after align-
ment (using PCA with 80% energy) is 14, twice as many as

2http : //www.cs.umass.edu/ ∼ elm/congealing/

our method (6). In the experiments reported by [23], the au-
thors jointly aligned samples of the same number, achieving
better alignment results than the ones in fig. 6.c. Further-
more, our method is more computationally efficient. Em-
ploying a Pentium 4 3Ghz running Windows XP our method
takes 25s, while the Congealing method takes 305s.

5.3. Improving face labeling

This section shows an application of PKPCA to improve
upon manual labeling of landmarks in faces. Previous work
of Walker et al. [36] has addressed this important problem
by finding correspondences among salient points in images.
Recently [19] proposed an extension of Congealing meth-
ods to align faces with rigid transformations. In this sec-
tion, we demonstrate how to extend previous work in order
to align facial features of people’s faces using PKPCA.

We selected 920 frontal face images with neutral expres-
sion and direct illumination (see fig. 1) from the CMU
Multi-PIE database [18]. We use 600 face images to learn
a KPCA model of appearance, C (eq. 3), around 66 land-
marks and a linear model of shape, Bs. We perform PCA
on the shape, since it has been previously shown that a
linear model provides good generalization across identities
and expressions; whereas, a linear model does not gener-
alize well for appearance [17]. The algorithm starts with
the manually labeled landmarks red dots in fig.(7). Differ-
ent images have been labeled by different people. B s is
obtained by computing PCA on the landmarks and preserv-
ing 95% of the energy. An a additional translational basis
(x and y directions) is added for the landmarks in the eyes,
brows and corners of the mouth. These extra basis will al-
low compensation for more accurate positioning of the land-
marks outside the shape model. The KPCA model (C) is
computed by performing KPCA on patches of 22 × 22 pix-
els around the landmark locations [12], and preserving 90%
of the energy. Once the initial model is built, the algorithm
alternates between two steps until convergence: (i) align all
images w.r.t. the KPCA model, (ii) Recompute the KPCA
model so it minimizes Eq. 12.

We let the algorithm run for 10 iterations. At each
iteration the number of eigenvectors decreases, since the
data is better aligned, and hence more compactly encoded.
The amount of eigenvectors for those ten iterations is:
139, 106, 97, 93, 91, 89, 88, 87, 86, 85, 85. As we can see
at the end of the convergence, the KPCA is more com-
pact (41% less eigenvectors that the initial configuration).
Furthermore, the landmarks are placed more consistently
across people’s features. Fig. 7 shows some examples of
landmarks before and after learning KPCA. The yellow
crosses correspond to the placement of the landmarks af-
ter learning the model invariantly to non-rigid deformations.
The red dots represent the initial manual labeling. As we
can see, PKPCA is able to achieve a more consistent label-



a b c

Figure 6. Joint alignment of handwritten digits, (a) original digits from USPS dataset, (b) result of PKPCA, (c) result of Congealing method.

ing across subjects’ features (e.g. nose, eyes).
Since the PKPCA model has fewer parameters, it is

likely to be less prone to over-fitting in new testing data.
To test the fitting capabilities of the new model, we took
320 testing subjects from the CMU Multi-pie database [18].
We start from the mean shape and let the PKPCA algorithm
converge. The error and standard deviation for the initial
model is 3.73 ± 3.8 pixels and PKPCA 3.42 ± 3.1. The
difference is not statistically significant in this dataset, but
recall that the PKPCA model uses 41% fewer number of
eigenvectors.

6. Conclusion

In this paper, we have extended KPCA by incorporating
geometric transformations into the formulation, and a gradi-
ent descent algorithm has been proposed for fast alignment.
Furthermore, we show how to learn this model in an unsu-
pervised manner. Preliminary experiments show the ben-
efits of our approach in comparison with traditional linear
PCA models to register both rigid and non-rigid motion.
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